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Abstract:
This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and
the observation of the BKT transition into a quasi long-range ordered superfluid phase.

The pair momentum distribution of the gas is probed by means of a matter-wave
focusing technique which relies on time-of-flight evolution in a weak harmonic potential.
This distribution holds the coherence properties of the gas.

The quasi long-range ordered phase manifests itself as a sharp low-momentum peak.
The temperature where it forms is identified as the transition temperature. By tuning
the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in
the BEC-BCS crossover is mapped out.

The phase coherence is investigated in a self-interference experiment. Furthermore,
algebraic decay of correlations is observed in the trap average of the first order corre-
lation function, which is obtained from the Fourier transform of the pair momentum
distribution. This is in qualitative agreement with predictions of homogeneous theory
for the superfluid phase in a 2D gas.

The presented results provide a foundation for future experimental and theoretical
studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex
systems such as the electron gas in high-Tc superconductors.

Zusammenfassung:
Diese Arbeit beschreibt die Realisierung eines zweidimensionalen Fermi-Gases im BEC-
BCS Crossover, sowie die Beobachtung des BKT-Phasenüberganges in eine superfluide
Phase, welche quasi-langreichweitige Ordnung aufweist.

Die Paar-Impulsverteilung des Gases wird mit Hilfe einer Materiewellen-
Fokussierungstechnik gemessen, welche auf ballistischer Expansion in einem schwachen
harmonischen Potential beruht. Sie beinhaltet die Kohärenzeigenschaften des Gases.

Die Phase von quasi-langreichweitiger Ordnung zeigt sich als steiler Peak bei niedrigen
Impulsen, welcher an der kritischen Temperatur zuerst auftritt. Durch Messungen bei
verschiedenen Temperaturen und Wechselwirkungsstärken wird das Phasendiagramm
des 2D Fermi-Gases bestimmt.

Die Phasenkohärenz wird in einem Selbst-Interferenz Experiment gemessen. Außer-
dem wird im Fallenmittel der Korrelationsfunktion erster Ordnung algebraischer Zerfall
beobachtet. Ein solcher algebraischer Zerfall wird für die superfluide Phase in einem
homogenen 2D Gas erwartet.

Diese Ergebnisse stellen die Grundlage für zukünftige experimentelle und theoretis-
che Arbeiten über stark korrellierte 2D Fermi-Gase dar. Sie können zum Verständnis
komplexer Systeme, wie dem Elektronengas in Hochtemperatur-Supraleitern beitragen.
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1. Introduction
The dimensionality of a system fundamentally influences its behavior. One of the
most intriguing and simultaneously technologically relevant examples are layered
superconductors such as cuprates [Bed86, Wu87]. Here the electron gas is confined
to quasi two-dimensional layers and the transition to the superfluid phase occurs at
unusually high temperatures up to approximately 130K [Sch93]. Unfortunately,
the mechanisms which lead to this high critical temperature are not yet fully
understood. This is due to the complexity of the system, which makes a rigorous
theoretical treatment difficult [Nor11].
A reliable strategy used in physics to overcome such a challenge is to reduce

the complexity of the system by omitting some of the details and considering only
the essential properties. One can then investigate whether the simplified model
still exhibits the key properties of the system, in this case the transition into a
superconducting phase at high temperatures. The obtained understanding of the
physics in the simplified system can then be used to understand more and more
complex systems, until one arrives at the full complexity of the original problem.
A simple model for the electron gas in the layered superconductor which still

features the crucial points is a two-dimensional, two-component Fermi gas with
contact interactions. However, despite its simplicity it is hard to solve this model
in the strongly coupled regime, where the interactions cannot be treated pertur-
batively. For a complete solution, which extends beyond the weakly interacting
regime, a purely theoretical treatment is thus not sufficient.
To provide a benchmark for theory, we model the simplified system with a quasi

two-dimensional gas of ultracold fermionic atoms in an optical dipole potential
and thus perform an analog quantum simulation of its Hamiltonian [Fey82, Blo12].
Ultracold atoms are an ideal tool to engineer simple Hamiltonians. Due to their
low kinetic energy, they can be described as effectively structureless bosons or
fermions, which interact via a generic contact potential [Ket08]. The interaction
strength between the atoms can be described by a single number, the s-wave
scattering length a. It can be tuned to almost arbitrary values with the help of
Feshbach resonances [Chi10]. Furthermore, ultracold atoms can be confined in
magnetic and optical potentials, which allow for the creation of a wide range of
geometries. In contrast to solid state systems, it is possible to realize systems
which are well decoupled from the environment.
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Although our model system is much simpler than the electron gas in the super-
conductor, it already features rich physics. At positive scattering lengths, which
correspond to repulsive mean field interactions, the atoms are bound in diatomic
molecules which form a bosonic superfluid phase at low temperatures due to their
integer total spin. At negative scattering lengths, which correspond to attractive
mean field interactions, the binding energy of the molecules becomes negligible
and the system consists of attractively interacting free fermions, which can be
described by BCS theory [Bar57]. By ramping the interaction strength from the
bosonic side across a Feshbach resonance to the fermionic side, it is possible to
continuously transform the bosonic superfluid of molecules into a fermionic super-
fluid of loosely bound Cooper pairs. This is the 2D equivalent of the famous 3D
BEC-BCS crossover.
The 3D BEC-BCS crossover has been studied extensively in theory and in ex-

periment [Eag69, Leg80, Reg04, Bar04, Zwi04, Ket08, Gio08, Zwe11]. Its 2D
equivalent, which is investigated in this thesis, is harder to access both in theory
and experiment due to its reduced dimensionality and the associated increased role
of fluctuations. It has been studied theoretically in several publications, including
[Ran89, Pro01, Pro02, Pet03, Isk09, Ber11, Bau14, Lev14]
A striking feature of homogeneous 2D systems is the impossibility of condensa-

tion into a true long-range ordered phase at finite temperatures [Mer66, Hoh67].
However, the transition into a quasi long-range ordered superfluid phase, where
correlations decay algebraically with distance is still possible. This so-called BKT
(Berezinskii, Kosterlitz, and Thouless) transition can be explained by the pairing
of vortices with opposite rotation [Ber72, Kos73]. Above the transition tempera-
ture, the free vortices destroy correlations on length scales larger than the thermal
wavelength. Below the transition temperature, the vortices form pairs and their
rotations cancel. Hence, they do not contribute to the long-range behavior of the
gas, and quasi long-range order forms. The BKT transition was first observed in
a thin film of liquid 4He [Bis78].
Experimentally, the realization of a truly two-dimensional gas is impossible in

our three-dimensional world. However, by confining the gas in a highly anisotropic
oblate potential, it is possible to freeze out motional excitations in the third di-
mension and thus to obtain a so-called quasi-2D system. Although it is three-
dimensional on microscopic scales, this system has the density of states of a 2D
system and can be described by 2D theory.
Quasi-2D ultracold quantum gases were first realized with bosonic atoms [Gör01].

The BKT phase transition was observed in this system in [Had06], and the super-
fluidity of the low temperature phase was experimentally confirmed in [Des12].
The preparation of a quasi-2D Fermi gas of ultracold atoms is experimentally

more challenging. It was recently achieved by several groups [Gün05, Mar10,
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1. Introduction

Frö11, Dyk11, Fel11, Som12, Kos12, Frö12, Zha12, Mak14]. However, the BKT
transition into the quasi long-range ordered superfluid phase could not be observed
until now.
This thesis reports on the direct observation of the BKT transition across the

2D BEC-BCS crossover. The coherence properties of the gas are encoded in its
momentum distribution, where long-range order manifests itself as an enhanced
population of low-momentum states. With the help of a matter-wave focusing
time-of-flight technique, we obtain the momentum distribution of a strongly in-
teracting two-component quasi-2D Fermi gas. At low temperatures, we observe a
sharp low-momentum peak, which is a clear signature of long-range order.
By tuning the interaction strength and the temperature, we map out the phase

diagram of the Fermi gas in the 2D BEC-BCS crossover. We find the transition
into the long-range order phase on the bosonic as well as on the fermionic side of
the crossover. In the strongly interacting limit, we find a critical temperature of
Tc/TF ≈ 0.2. It is an order of magnitude higher than those of currently known
high-Tc superconductors. An analysis of the correlation function confirms the
algebraically decaying quasi long-range order in the low-temperature regime, which
is predicted for the 2D superfluid phase.

Outline
This thesis is organized as follows: chapter 2 gives a brief introduction into the
theory of three- and two-dimensional quantum gases. It focuses on the differences
between the different dimensionalities and on the phase transition into a long-range
ordered superfluid phase at low temperatures.
The experimental setup which was designed and built during this thesis is pre-

sented in chapter 3. In addition to the preparation of a quasi-2D Fermi gas in the
strongly interacting regime, it also provides the possibility to prepare a gas in a
single layer square optical lattice. This will enable us to simulate a large class of
different Hamiltonians with our setup.
The preparation of the quasi-2D Fermi gas in our setup and the measurement

process are described in chapter 4. There are several key techniques which are
necessary for the preparation. They include the preparation of a degenerate gas
in a single oblate layer of an optical standing wave trap, and the confirmation
that the quasi-2D regime is reached where excitations in the third dimension are
frozen out. The measurement process is described in the two last parts of chapter
4. They describe the calibration of the absorption imaging setup as well as a
momentum space imaging technique. This technique allows the identification of
pair condensation across the BEC-BCS crossover in a consistent way.
With these experimental tools at hand, chapter 5 presents the results of our
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measurements. After a description of how temperature, non-thermal fraction, and
the critical temperature of the superfluid transition are extracted, the obtained
phase diagram is shown. Furthermore, the analysis of the coherence properties of
the superfluid phase is described.
The thesis concludes in chapter 6 with a summary of the measured data and

an outlook. Since a large part of this thesis consisted in the planning and setting
up of the experimental apparatus, the outlook not only features physics directly
connected to the presented experiments, but also gives a perspective for other
future experiments with the apparatus.

4



2. Low-Dimensional Quantum Gases
In the experiments described in this thesis, a strongly interacting quasi two-
dimensional (quasi-2D) Fermi gas is created and its properties are examined as
a function of interaction strength and temperature.
A quasi-2D system is characterized by an effectively frozen out third dimension,

which leads to a many-body behavior governed by 2D physics. This is for example
the case in materials like graphene or layered superconductors, where the electron
gas is confined in two-dimensional planes [Nor11, Jos13]. Although axially excited
quantum states still exist, they are not populated since they have an energy which
is higher than all other energy scales of the system. The density of states is thus
that of a 2D system, and the macroscopic properties can be described in the 2D
framework [Pet00, Mar10].
However, when the energy of the particles becomes close to that of the first

axially excited state, the residual influence of the third dimension becomes impor-
tant. In this regime, the critical temperature for superfluid pair condensation is
predicted to be enhanced [Fis14]. This effect could help explain the high critical
temperatures found in quasi-2D solid state systems.
The chapter starts by reviewing the few-body physics in a quantum gas. First,

the properties of fermions and bosons and the experimental realization of a quan-
tum gas with ultracold atoms are investigated. Then, the interactions in such a
gas are reviewed while considering the dimensionality of the sample. In the second
part of the chapter, the many-body physics of the system are discussed. This part
focuses on the condensation into a superfluid phase in the BEC-BCS crossover be-
tween an effectively bosonic and a fermionic system. Unlike in three dimensions,
the superfluid in two dimensions does not exhibit true long range order at finite
temperature. Instead, it features quasi long range order, which is characterized by
algebraically decaying phase correlations.

2.1. Fermions and Bosons
In a system where the de-Broglie wavelength λdB = h/p [Bro23], where h is
Planck’s constant and p is the momentum of a particle, of the constituting par-
ticles becomes comparable to the interparticle spacing, quantum mechanical be-
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2.2. Realization of a Quantum Gas with Ultracold Atoms

havior becomes relevant. The particles then have to be described in terms of their
wave function. Due to the overlap of their wave functions, identical particles thus
become indistinguishable, i.e.

|PµνΨ|2 = |Ψ|2, (2.1)

where Ψ is the many-body wave function of the system and Pµν is an operator
which exchanges the µth and the νth identical particle [Sak94]. In particular,
exchanging the same pair of particles twice must not change the wave function,
and Pµν must have the eigenvalues ±1. Equation (2.1) thus yields two solutions:

PµνΨ = −Ψ and PµνΨ = +Ψ. (2.2)

These two solutions define two classes of particles:

• Fermions fulfill the antisymmetric solution and carry a half-integer spin.
Due to their antisymmetry, no state can be occupied by more than one par-
ticle: if the µth and the νth particle are in the same single-particle quantum
state, their exchange must not change the many-body wave function. This
directly contradicts the antisymmetric solution in equation (2.2). Hence, two
identical fermions must not occupy the same single-particle quantum state.
This fundamental law is known as the Pauli exclusion principle [Pau25].

• Bosons comply with the symmetric solution and carry an integer spin. Due
to their symmetric behavior under particle exchange, there is no restriction
for the occupation number of single-particle states.

It is important to note that a dimer consisting of two fermions has an integer spin
and thus behaves as a boson as long as its binding energy is big compared to all
other energy scales.

2.2. Realization of a Quantum Gas with Ultracold
Atoms

In this thesis, we realize a gas in which the quantum mechanical behavior of the
constituents becomes relevant as described above, with ultracold neutral atoms.
Although they are composite particles, the internal structure is not resolved when
the atoms scatter with each other at low energies. The atoms can then be treated
as effective structureless bosons or fermions, depending on their total spin. We
conduct our experiments with fermionic atoms. This allows to compare our results
to the technologically relevant electron gas.
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2. Low-Dimensional Quantum Gases

Although this realization of a quantum gas does not occur in nature, it has
several benefits which make it an ideal system for our studies. The atoms in an
ultracold gas interact with each other by means of scattering interactions. Due to
their low collision energies, the interaction is well described by s-wave scattering
on a generic point-like pseudopotential. Thus, the interaction can be described
by a single number, the so-called scattering length a. This feature is described
in chapter 2.2.1. It enables the realization of many-body systems which can be
described by simple model Hamiltonians. In contrast, the electron gas exhibits
long-range Coulomb interactions which make the theoretical treatment difficult.
In addition, ultracold gases provide the possibility to tune the interparticle inter-

actions to almost arbitrary values by means of so-called Feshbach resonances. This
is described in chapter 2.2.2. Closely related to the mechanism of these resonances
is the existence of a universal two-body bound state. The bosonic character of
this dimer and its dependence on the interaction strength lead to rich many-body
physics. In particular, they are the key ingredients of the BEC-BCS crossover,
which is described in chapter 2.3.
Furthermore, ultracold atoms can be confined in almost arbitrary trapping ge-

ometries. This allows for the experimental realization of a large class of different
systems. In this thesis, the behavior of an ultracold quantum gas in a quasi-2D
layer is investigated. Thus, the influence of the quasi-2D geometry on the physics
in the gas is taken into account in the following chapters.

2.2.1. Interactions in an Ultracold Quantum Gas

This chapter reviews the interaction properties in a quantum gas of ultracold atoms
which interact via two-body scattering.
The scattering cross section between the atoms is influenced by the dimensional-

ity of the system in two ways: the scattering process itself depends on the dimen-
sionality, and the density of available states for the scattering particles changes
as will be shown in detail in chapter 2.3.1. Thus, this chapter treats scattering
processes in 3D, in 2D, and in the quasi-2D regime, where the scattering process
is three-dimensional but the density of states is that of a 2D system.

3D

In a 3D quantum gas with a radially symmetric short range interaction potential
Vint(r), the two-body scattering process is described in the center of mass frame
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2.2. Realization of a Quantum Gas with Ultracold Atoms

by the Schrödinger equation [Gio08][
p2

2mr

+ Vint(r)
]
ψ(r) = Eψ(r) . (2.3)

Here, both r = r1 − r2 and p = p1 − p2 are given in relative coordinates, and
mr = m1m2

m1+m2
is the reduced mass. Equation 2.3 can be solved by an incoming plain

wave ψ0 and a scattered spherical wave ψs:

ψ(r) ∝ ψ0(r) + ψs(r) ∝ eik0z + f(k, θ)e
ikr

r
(2.4)

where k0 and k are the wave numbers of the incoming and scattered wave, respec-
tively. The scattering cross section dσ

dΩ is determined by the scattering amplitude
f(θ) as

dσ

dΩ =


|f(k, θ)|2 for non-identical particles
|f(k, θ)− f(k, θ + π)|2 for identical fermions
|f(k, θ) + f(k, θ + π)|2 for identical bosons .

(2.5)

The results for identical fermions and bosons are different from the one for non-
identical particles due to the different symmetry constraints of their wave func-
tions.
The scattering amplitude f can be found by a partial wave expansion in terms

of angular momentum l. Assuming low energy scattering, which is reasonable for
an ultracold gas, angular momenta l ≥ 1 are frozen out due to the centrifugal
barrier. The scattering amplitude is then dominated by the so-called s-wave term
with l = 0 [Ket08]:

f(k) = 1
k cot δ0(k)− ik , (2.6)

where δ0 is the phase shift between the incoming and the scattered wave.
This solution is spherically symmetric, which has an important consequence: to-

gether with equation 2.5, it becomes evident that dσ/dΩ = 0 for identical fermions.
Thus, they do not interact with each other in s-wave scattering. A Fermi gas inter-
acting via s-wave scattering can hence only be realized with at least two different
kinds of fermions, which are then distinguishable and can interact.
The scattering amplitude f only depends on the wave vector k and the phase

shift δ0 of the scattered particles. Since these two quantities are not independent
of each other, it is possible to describe the whole scattering process by a single
number, the scattering length a. It can be found by expanding k cot δ0 in k [Ket08]:

8



2. Low-Dimensional Quantum Gases

k cot δ0(k) ≈ −1
a

+ k2

2 reff , (2.7)

where reff is the effective range of the scattering potential. For low momenta
kreff � 1, the scattering length is thus given by

a = −tan δ0

k
. (2.8)

The low energy scattering amplitude can now be rewritten as

f(k) = 1
− 1
a

+ k2

2 reff − ik
. (2.9)

For reff � k, f(k) can be simplified in two limits:

f =
−a for k|a| � 1 (weakly interacting regime)
i
k

for k|a| � 1 (unitary regime) .
(2.10)

In the weakly interacting regime, all interactions in the system are thus exclusively
described by the scattering length a, which hence takes the role of an interaction
parameter. In the unitary regime, which is reached in close vicinity of a scattering
resonance where a diverges (see chapter 2.2.2), the interactions are limited by the
wave vector k of the scattering particles.

For a de-Broglie wavelength λdB � reff (as it is the case for the experiments
with ultracold atoms described in this thesis), the interatomic potential is not
resolved. The scattering process therefore becomes universal and can be described
as a contact interaction [Ket08] with a pseudo-potential

V (r) = g δ(r) (2.11)

with the delta function δ 1 and the interaction strength

g = 4π~2a

m
. (2.12)

The mean-field interaction energy in a sample with homogeneous density n = N/V

1In order to avoid divergence, the delta function still has to be regularized by replacing it with
δ(r) ∂

∂r r.
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2.2. Realization of a Quantum Gas with Ultracold Atoms

is then given by [Wei09]

Eint(a) = g n = 4π~2n

m
a . (2.13)

For a > 0, the mean-field interaction energy is thus positive which leads to a
repulsive mean-field interaction. For a < 0, it is negative and the mean-field
interaction is attractive.

2D

In a two-dimensional quantum gas, contact interactions between the constituting
particles can be treated similarly to the 3D case. However, due to the different den-
sity of available quantum states and the reduced dimensionality of the scattering
process itself, the results are slightly different. The s-wave scattering amplitude in
the 2D system is given by [Lev14]

f2D(k) = −4
cot δ0(k)− i . (2.14)

Similar to the 3D case, the phase shift δ0 can be expanded according to

cot δ0(k) = 2
π

ln(ka2D) +O(k2) , (2.15)

where a2D is the 2D scattering length. This leads to

f2D(k) = −4
2
π

ln(ka2D)− i (2.16)

for low momenta. The interaction parameter of the 2D system is thus ln(ka2D).
To describe a many-body system, it is helpful to use a characteristic momentum

scale of the system for the interaction parameter. In a Fermi gas, this momentum
scale is given by the Fermi momentum kF (see chapter 2.3.2). Thus, the dimen-
sionless interaction parameter of the 2D Fermi gas is ln(kFa2D). Similar to the 3D
case, the mean-field interactions for ln(kFa2D) > (<) 0 are attractive (repulsive).

Quasi-2D

In a quasi-2D system, the motion of particles is confined to a two-dimensional
plane. Thus, the density of available quantum states is that of the 2D system,
and the macroscopic properties of the system can be described by 2D theory
[Pet00, Mar10]. In particular, the scattering amplitude in the quasi-2D system
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2. Low-Dimensional Quantum Gases

is given by equation 2.16 as in the 2D case [Blo08]. The interaction parameter for
the quasi-2D Fermi gas is thus also ln(kFa2D).
However, unlike in the true 2D case the third dimension still exists. In a typical

quasi-2D system of ultracold atoms, the length scale of the interaction potential
Vint(r) is given by the van-der-Waals length lvdW ≈ 50a0 ≈ 3 nm, which is consid-
erably smaller than that of the confinement to the 2D plane. Thus, the microscopic
scattering process has to be described in three dimensions and the 2D scattering
length a2D can be derived from the 3D scattering length a.
For a harmonically confined quasi-2D quantum gas, the 2D scattering length

can thus be calculated from the 3D scattering length a and the harmonic oscillator
length `z =

√
~/mωz of the tight confinement [Lev14]. It is given by

a2D = `z

√
π

A
exp

(
−
√
π

2
`z
a

)
, (2.17)

where A ≈ 0.905 [Pet01, Blo08]. In [Lev14], this expression is derived directly
from the scattering properties of the particles in a T-Matrix approach. It is found
to be valid for all interaction strengths and only requires the scattering energy
to be negligible as compared to the strength of the tight confinement, which is
automatically given in a quasi-2D framework. Thus, although there are other
definitions of a2D [Pet01, Blo08], in this thesis the definition according to equation
2.17 is used for all interaction strengths.
In analogy to the 3D case, the 2D interaction strength is then [Had11]

g2D =
√

8π~2(a/`z)
m

= ~2

m
g̃2D (2.18)

with the dimensionless 2D coupling constant g̃2D =
√

8π(a/`z).

2.2.2. Tuning the Interaction Strength: Feshbach Resonances
This chapter reviews the tunability of the scattering length a and thus the mean-
field interaction between the particles in an ultracold quantum gas. In this system,
the scattering length can be tuned easily by means of Feshbach resonances [Fes58,
Chi10].
A Feshbach resonance is a scattering resonance which occurs when two free

scattering atoms can couple to a bound state during the scattering process. This
is depicted in figure 2.1. The atoms scatter in the so-called open channel, which
corresponds to a certain spin configuration (black). At the same time, there is a
different spin configuration called the closed channel (red), where there is a bound
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2.2. Realization of a Quantum Gas with Ultracold Atoms

state close to the scattering continuum. Due to energy conservation, the atoms
cannot enter the closed channel, which has a larger continuum energy. However
when the energy difference ∆ε between their incident energy and the bound state
becomes small, they can couple to that state during the scattering process. For
∆ε → 0, the scattering length diverges. It is positive when the bound state lies
below the scattering continuum, and negative when it lies above.

closed channel

open channel

interatomic distance r

E
ne

rg
y 
E

0

ΔE = Δμ B
Δε

Figure 2.1.: Schematic model of a Feshbach resonance. Two atoms scatter with
each other in a certain spin configuration, the so-called open channel
(black interatomic potential). Their incident energy is negligible in the
ultracold regime and can thus be approximated by the continuum of
the open channel. There exists a spin configuration of the atoms which
supports a bound state (closed channel, red interatomic potential).
Due to the higher energy of the closed channel continuum, the atoms
cannot access the closed channel. However if the energy difference
∆ε between the bound state and the energy of the atoms is small, the
free atoms can couple to the bound state and the scattering length a is
resonantly enhanced. If there is a difference ∆µ in magnetic moment
between the two channels, ∆ε and thus a can be tuned with the help
of a homogeneous magnetic field B. Adapted from [Chi10].

If the two channels have different magnetic momenta µ, e.g. due to their differ-
ent spin configuration, it is possible to tune their relative energies by applying a
magnetic field B:

∆E = ∆µB . (2.19)
Here, ∆E is the energy difference between the continua of the two channels, and
∆µ is the difference in magnetic momentum.
The scattering length a can thus be tuned by the application of a magnetic offset

12



2. Low-Dimensional Quantum Gases

field B. Its dependence on B can be modelled by [Chi10]

a(B) = abg

(
1− ∆

B −B0

)
, (2.20)

where abg is the background scattering length, ∆ is the width of the resonance,
and B0 its position.
The experiments described in this thesis are realized with ultracold 6Li atoms.

With a nuclear spin of I = 1 and an electronic spin of S = 1/2, 6Li is an effective
fermion. Hence, in order to obtain an interacting gas, two different spin states
of the atoms are necessary. The experiments are thus conducted with a balanced
mixture of the two lowest Zeeman sublevels, which are denoted |1〉 and |2〉 (see
figure 2.2).

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
- 9 0 0

- 6 0 0

- 3 0 0

0

3 0 0

6 0 0

9 0 0

F = 3 / 2

E/h
 [M

Hz
]

B  [ G a u s s ]

F = 1 / 2

| 3 >
| 2 >
| 1 >

m F =  - 3 / 2
m F =  - 1 / 2
m F =   1 / 2

| 6 >
| 5 >
| 4 >

m F =   3 / 2
m F =   1 / 2
m F =  - 1 / 2

Figure 2.2.: Zeeman sublevels of the 6Li 2 2S1/2 ground state. At low magnetic
fields, it splits into a hyperfine doublet (F = 1/2) and a quadru-
plet (F = 3/2). At higher fields, the spins decouple and there are
three mJ = −1/2 and three mJ = +1/2 states, which are labeled |1〉
through |6〉. Mixtures of the high field seeking states |1〉 - |3〉 are stable
against spin-changing collisions and thus experimentally accessible. In
the high field regime, they have magnetic moments of µ ≈ µBohr/~.
Atoms can be transferred between these states via radio-frequency
(RF) transitions (∆E ≈ h ·80MHz). Calculated according to [Bre31].

13



2.2. Realization of a Quantum Gas with Ultracold Atoms

The scattering length between ultracold 6Li atoms in state |1〉 and |2〉 is shown
in figure 2.3 (A) for magnetic offset fields between 0Gauss (G) and 1500G. There
is a broad Feshbach resonance at B0 = 832.2G [Zür13], where the scattering
length diverges. On the left side of the resonance, a > 0 and thus the mean field
interaction is repulsive, until a crosses zero at 527G. On the right side of the
resonance, a < 0 and the mean field interaction is attractive.

- 4
- 2
0
2
4

0 5 0 0 1 0 0 0 1 5 0 0
- 6
- 3
0
3
6

a [
10

00
 a 0]

A

B

ln(
k Fa 2D

)

B  [ G a u s s ]

k F  =  3 . 9  µ m - 1

Figure 2.3.: (A) s-wave scattering length a between 6Li atoms in state |1〉 and |2〉
in units of the Bohr radius a0 as a function of the magnetic offset field
B. The Feshbach resonance at B0 = 832.2G is used in the experimen-
tal part of this thesis. Note that the narrow resonance at 543G is not
resolved in the plot. Data taken from [Zür13].
(B) ln(kFa2D) as a function of B. a2D is calculated from a using
equation (2.17), assuming `z = 551.2 nm and kF = 3.9µm−1, which
are typical experimental values. For a → 0 (527G), ln(kFa2D) di-
verges. Due to the large values of ln(kFa2D) around the divergence,
this is not shown in the figure.

The 2D interaction parameter ln(kFa2D) of our harmonically trapped quasi-2D
system is shown in figure 2.3 (B). It is calculated with equation 2.17, assuming
typical experimental values of `z = 551.2 nm and kF = 3.9µm−1. In contrast to
a, it shows no divergence, but instead becomes zero where the sign of mean-field
interactions changes. Unlike in the 3D case, this point can be tuned by changing
kF . This can be achieved by tuning the particle number (see equation 2.35), which
directly corresponds to a change of the density. In a harmonically trapped system
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2. Low-Dimensional Quantum Gases

with fixed particle number, the density and thus kF also change with temperature.

Bound State

Closely related to the mechanism of the Feshbach resonance is the existence of a
two-body bound state. The binding energy of this dimer becomes universal when
the scattering length is substantially larger than the effective range of the inter-
atomic interaction potential, a � reff. It is thus independent of the microscopic
properties of the atoms and only depends on the mass of its constituents and on
a.
The experiments described in this thesis are conducted at magnetic offset fields

between 692G and 1400G. In this regime, |a| & 1460 a0 (see figure 2.3 (A)). The
effective range of the attractive interatomic potential is given by the van-der-Waals
length as reff = lvdW ≈ 62.5a0 for 6Li [Bra09]. Thus, the two-body bound state is
well approximated by the universal description.
In 3D, the binding energy of the universal dimer is given as

EB = ~2

2mra2 (2.21)

for a > 0. For a < 0, the dimer becomes unbound. Here, mr is the reduced mass of
the two particles. In our case, where both particles are atoms of the same species,
mr = m/2.
The situation is different in 2D where a2D > 0 for positive and negative inter-

action parameters. Here, the dimer, whose binding energy is defined similarly to
the 3D case as [Lev14]

EB,2D = ~2

2mra2
2D

, (2.22)

remains bound for all values of ln(kFa2D).
In the experimentally accessible quasi-2D scenario, equation 2.22 does not hold.

This is due to the introduction of the additional length scale `z of the tight con-
finement. Here, the dimer binding energy can be calculated from a via the tran-
scendental equation [Pet01, Blo08, Lev14]

`z
a

=
∫ ∞

0

du√
4πu3

1−
exp(−EB,q2D

~ωz
u)√

1
2u(1− exp(−2u))

 . (2.23)

This definition is valid under the assumptions that (reff/`z)2 → 0, which is well
fulfilled in our system. The quasi-2D dimer binding energy EB,q2D is displayed
in figure 2.4 for our system, together with the 3D and 2D binding energy. For
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2.2. Realization of a Quantum Gas with Ultracold Atoms

large binding energies (`z/a� 1), the size of the dimer is on the order of a� `z.
It is thus only weakly perturbed by the tight confinement and its binding energy
approaches that of the 3D dimer. For small binding energies (`z/a � −1), the
dimer becomes large. It is thus strongly influenced by the confinement and behaves
like the 2D dimer. In particular, it remains bound for all ln(kFa2D). The binding
energy EB,q2D has been measured to agree well with the theoretical values using RF
spectroscopy on ultracold atoms in two independent experiments [Som12, Bau12].

7 8 0 8 0 0 8 2 0 8 4 0 8 6 0 8 8 0 9 0 0

- 3

- 2

- 1

0 q u a s i - 2 D
3 D

-E B +
 E c [�

�
z]

B  [ G a u s s ]

2 D

Figure 2.4.: Binding energy of the universal dimer in quasi-2D (blue, calculated
according to equation (2.23)), 2D (green, equations (2.22) and (2.17))
and 3D (red, equation (2.21)) for 6Li atoms in states |1〉 and |2〉. The
quasi-2D confinement is given by `z = 551.2nm. Whereas the 3D
dimer becomes unbound on resonance (832.2G), the quasi-2D and 2D
dimers stay bound. The continuum of the quasi-2D dimer is shifted up
to Ec = 1/2 ~ωz by the strong harmonic confinement. The continuum
of the 2D dimer has thus been adjusted likewise. EB,q2D approaches
the 3D solution in the limit of large binding energies, where the dimer
becomes small and is not influenced by the confinement. For small
binding energies, where the dimer is large and is thus heavily modified
by the confinement, EB,q2D approaches the 2D case.
The quasi-2D binding energy is plotted over the full magnetic field
range covered in our experiments in figure A.1 in the appendix.
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2. Low-Dimensional Quantum Gases

2.3. Many-Body Physics in Ultracold Quantum
Gases

After the few-body physics in an ultracold quantum gas has been introduced in
the last chapter, this chapter gives an overview over the many-body properties.
Aside from interactions, the properties of such a gas are mainly determined by

the quantum statistics of the constituting particles and the geometry of the system,
which influences the density of states. These two parameters are first discussed in
a general way. Then, the resulting properties of Fermi- and Bose gases in three
and two dimensions are reviewed with a focus on the condensation into a super-
fluid phase in the Bose gas. In 3D, the famous BEC transition into a superfluid
phase with true long-range order occurs at low temperatures. In 2D, Bose-Einstein
condensation is forbidden at finite temperatures by the Mermin-Wagner theorem
[Mer66]. However, there is a Berezinskii-Kosterlitz-Thouless (BKT) transition into
a superfluid phase which exhibits quasi long-range order [Ber72, Kos73]. Finally,
the BEC-BCS crossover, which connects bosonic and fermionic superfluidity is dis-
cussed. The 3D crossover has been subject to intense studies. In contrast, its 2D
counterpart is not well understood yet. The experiments presented later in this
thesis will thus be a benchmark for current theoretical models and contribute to
the understanding of this intriguing phenomenon.

2.3.1. Quantum Statistics and Density of States
The population of energy states in fermionic or bosonic many-body systems is
given by the Fermi-Dirac and Bose-Einstein distribution functions, respectively:

f±(E) = 1
e(E−µ)/kBT ± 1 , (2.24)

where the + (−) holds for fermions (bosons) [Fli10]. Here, µ is the chemical
potential and kB is Boltzmann’s constant. As will be detailed in chapter 2.3.2
and 2.3.3, fermions and bosons consequently behave fundamentally different for
T → 0. Fermions fulfill the Pauli principle and continuously populate all available
quantum states from the lowest available energy to the Fermi energy EF . In
contrast, bosons only occupy the lowest quantum states, where they may form a
Bose-Einstein condensate (BEC). This is depicted in figure 2.5 for a harmonically
confined gas .
In addition to the distribution function of the particles in a system, the density

of available quantum states g(E) also fundamentally determines the many-body
properties.
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2.3. Many-Body Physics in Ultracold Quantum Gases

(b) bosons(a) fermions

EF

Figure 2.5.: Sketch of fermions (a) and bosons (b) in a harmonic potential at T = 0.
Whereas fermions populate states up to the Fermi energy EF , bosons
condense in the lowest state in 3D and 2D. Adapted from [Wen13].

It is instructive to calculate g(E) from the total number of available states G(E)
at energies up to E. G(E) can be found by dividing the energetically accessible
phase space by the size of a phase space cell [Pet02]. For a free particle with a
maximum momentum p = (2mE)1/2 in a homogeneous 3D volume L3, this leads
to

G(E) =
4π
3 (2mE)3/2L3

(2π~)3 . (2.25)

The density of states is then

g3D(E) = dG(E)
dE

= L3m3/2
√

2π2~3
E1/2 (2.26)

for E > 0. In 2D, the same argumentation leads to

g2D(E) = L2m

2π~2 . (2.27)

Unlike in the 3D case, g2D is thus not energy dependent.
The total particle number N is now related to the distribution function and the

density of states like
N = N0 +

∑
E>0

f(E) g(E) . (2.28)

where N0 is the number of atoms in the ground state. In a semiclassical approxi-
mation it can be replaced by

N = N0 +Nex = N0 +
∫ ∞

0
f(E) g(E) dE . (2.29)
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2. Low-Dimensional Quantum Gases

2.3.2. Ideal Fermi Gases
In contrast to bosons, fermions cannot minimize their energy by condensing into
the ground state due to the Pauli principle. For T → 0, they thus fill up all
quantum states from the lowest available energy to the Fermi energy EF , which is
defined as the chemical potential µ at zero temperature, EF ≡ µ(T = 0). Thus, in
the thermodynamic limit, the so-called Fermi sphere forms in momentum space.

3D

For a given particle number N , the Fermi energy EF can be found by solving
equation (2.28) at T = 0, where the Fermi distribution becomes

f+(E) =
1 ; E < EF = µ(T = 0)

0 ; E > EF = µ(T = 0) .
(2.30)

Thus, equation (2.28) simplifies to

N = N0 +
∫ EF

0
g(E) dE (2.31)

in the semiclassical approximation (2.29). Due to the Pauli principle, one can
safely neglect N0 in the thermodynamic limit. Inserting g3D from equation (2.26),
one obtains

EF,3D = ~2

2m(6π2n3D)2/3 . (2.32)

Note that this is the Fermi energy of the one-component Fermi gas. In the ex-
perimentally relevant case of a two-component gas, n3D thus corresponds to the
density of one spin component.
From EF , on can now define the Fermi temperature TF = EF/kB and the Fermi

wave vector kF =
√

2mEF/~, which give the system its characteristic temperature
and momentum scales. It is important to note that these definitions are also used
to describe interacting Fermi gases or even Bose gases, where no Fermi surface
exists. They should then be interpreted as a scale for the density of the gas.

2D

The Fermi energy of the ideal homogeneous 2D Fermi gas can be obtained analo-
gously to the 3D case as

EF,2D = ~2

2m(4πn2D) , (2.33)
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where again n2D is the 2D density of one spin component.2 This yields the Fermi
temperature

TF,2D = ~2

2mkB
(4πn2D) (2.34)

and the Fermi wave vector

kF,2D =
√

4πn2D . (2.35)

Here, n2D is the 2D density. As in the 3D case, it is common to also describe
the interacting Fermi gas and the Bose gas by these terms.
In our experiments, we use a harmonically trapped gas. Here, the density of

states and thus the Fermi energy is altered by the trap. However, it is possible to
rescale the measured data to the homogeneous system by means of local density
approximation (LDA). To do this, we use the central 2D density n0 as n2D to
obtain the Fermi energy, temperature, and wave vector. We thus map the area of
highest phase space density, where condensation occurs first, to the homogeneous
gas. This is described in chapter 5.1.

2.3.3. Bose Gases
As mentioned above, bosons do not obey the Pauli exclusion principle. Thus,
for low temperatures they minimize their energy by condensing into the lowest
available quantum state, where they form a superfluid. The properties of this
superfluid phase are influenced by the dimensionality of the system: whereas in
3D true long range order (TLRO) is allowed for finite temperatures, it only occurs
for zero temperature in 2D. However, there is still a superfluid at finite temperature
in 2D, which is then characterized by quasi long range order (QLRO).

3D

In an ideal homogeneous three-dimensional Bose gas, all atoms condense into the
motional ground state for T → 0. This can be shown by evaluating equation (2.29)

N = N0 +Nex = N0 +
∫ ∞

0
f(E) g(E) dE

under the assumption of zero occupation of the ground state, i.e. N0 = 0. Under
the constraint of µ ≤ 0, which has to be fulfilled for the Bose gas, this leads to a

2In the experiment, we perform state-selective imaging, which directly yields the 2D density of
one spin component.
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maximum allowed phase space density [Pet02, Had11]

ρ3D = nλ3
dB ≤

2
π

∫ ∞
0

√
xdx

ex − 1 = ζ(3/2) ≈ 2.612 (2.36)

with the Riemann zeta function ζ. Thus, as the phase space density grows above
ρ = ρBEC ≈ 2.612, the ground state has to be macroscopically occupied and
Bose-Einstein condensation (BEC) into a superfluid phase occurs. By plugging
in the de-Broglie wavelength λdB = h/p = 2π~/

√
2mkBT , one can thus find the

transition temperature TBEC .

By evaluating the number of particles in the excited states Nex in equation (2.29)
for the critical value of µ = 0 below TBEC , one finds [Pet02]

Nex(T ) = N
(

T

TBEC

)3/2
. (2.37)

Thus, the number of particles in the ground state grows smoothly with decreasing
temperature:

N0(T ) = N −Nex(T ) = N

[
1−

(
T

TBEC

)3/2]
. (2.38)

This result is quantitatively valid also for the trapped 3D Bose gas. However, the
exponent of the temperature dependence changes. For the experimentally relevant
case of a gas in a 3D harmonic potential, it becomes 3. A general treatment can
for example be found in [Pet02].

The observed condensation into the lowest energy state goes along with the
appearance of long range correlations. To study these correlations, it is useful to
introduce the first order correlation function [Had11]

g1(r0 + r, r0) =
〈
Ψ̂�(r0 + r) Ψ̂(r0)

〉
, (2.39)

where Ψ̂(r) is the annihilation operator for a particle at position r and Ψ̂�(r)
the respective creation operator. In a homogeneous system, g1(r0 + r, r0) can be
written as g1(r). It is the Fourier transform of the momentum distribution n(k)
[Pit03]. The momentum distribution can be obtained by rewriting equation (2.29)
in momentum space. At low temperatures, the condensate is clearly visible as a
delta peak at zero momentum:

n(k) = N0δ(k) + nex(k) . (2.40)
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The thermal part nex of the momentum distribution follows a Gaussian. Thus,
the first order correlation function g1(r) also exhibits a Gaussian decay, which is
on the length scale of the de-Broglie wavelength λdB. A purely thermal gas at
T > TBEC thus exhibits no long-range order beyond the thermal length scale.
In contrast, the delta shaped condensed part transforms into a constant offset in
g1(r). Thus, for T < TBEC , g1(r) converges towards a non-zero constant for large
distance r. Thus, the sample exhibits correlations over an infinite range. This
behavior is called true long-range order (TLRO).

2D

In the homogeneous ideal 2D Bose gas, where the density of states is not energy
dependent, an evaluation of equation (2.29) equivalent to the discussed 3D case
yields

ρ2D = n2Dλ
2
dB = − ln

(
1− eµ/kBT

)
, (2.41)

which always has a valid solution with µ ≤ 0 for finite ρ2D. Thus, no Bose-Einstein
condensation into the ground state occurs at finite temperatures.
The situation becomes more interesting when interactions are introduced: as in

the ideal gas, true long range order is possible only in the experimentally irrele-
vant case of T = 0 [Bog60, Mer66, Hoh67] in a homogeneous 2D Bose gas with
weak repulsive short range interactions. However, for sufficiently low temperatures
T < Tc, there is a transition into a superfluid low-momentum phase with a slow
algebraic decay of correlations with r [Blo08, Had11], i.e.

g1(r) ∝ r−η . (2.42)

Similar to the 3D case, one can treat the superfluid and the thermal part of the
gas separately. The phase transition can then be understood by an argumentation
which neglects the thermal part [Had11]. Since the thermal part exhibits only
short-range correlations, this simplification is justified for the description of the
long-range behavior.
In the presence of interactions, density fluctuations in the gas are strongly

suppressed at low temperatures on length scales greater than the healing length
ξ = ~/√mg2Dn. Here, m is the particle mass, g2D is the 2D interaction strength,
and n is the 2D density. Thus, one can assume that at low temperatures excita-
tions only affect the phase θ of the superfluid wave function, which can be written
as

Ψ̂s(r) =
∣∣∣Ψ̂s(r)

∣∣∣ eiθ(r) = √nseiθ(r) . (2.43)
Here, ns < n is the density of the superfluid phase. There are two kinds of exci-

22



2. Low-Dimensional Quantum Gases

tations which affect the phase: phonon excitations, which correspond to smooth
variations of the phase, and vortices. A vortex is a topological excitation around
which the phase θ circulates by a multiple of 2π. Thus, the superfluid density in
the vortex core vanishes. Furthermore, vortices carry a quantized angular momen-
tum and lead to a rotation of the superfluid around the vortex core. Without a
transfer of angular momentum into the sample, they can thus only form in pairs
of opposite rotation.
One can intuitively understand that the excitation of a vortex requires a higher

energy than that of a phonon. Thus, at low temperatures vortices can be ne-
glected and only phonon excitations are relevant. Since the energy arising from
interactions is constant in this approximation, one can then describe the gas by
an effective Hamiltonian

Hθ = ~2

2mns

∫
d2r(∇θ)2 . (2.44)

This Hamiltonian is the continuous generalization of the XY spin model. In
contrast to the discrete XY Hamiltonian, it does not allow for vortices since it
assumes constant superfluid density for arbitrarily short length scales. In the
presence of vortices, this assumption does not hold due to the vanishing superfluid
density in their cores, where the phase is not defined. However, it is possible to
include vortices by means of a UV cutoff.
In the homogeneous case, the first order correlation function of this system can

be written as
g1(r) =

〈
Ψ̂�(r) Ψ̂(0)

〉
= ns

〈
ei(θ(r)−θ(0)

〉
. (2.45)

In the presence of phonon excitations, it can be calculated to be [Had11]

g1(r) = ns

(
r

ξ

)−1/(nsλ2
dB)

. (2.46)

The correlations thus exhibit an algebraic decay. This slow decay, which does not
exhibit a typical length scale is called quasi long range order (QLRO). Like true
long-range order (TLRO), it is a necessary and sufficient condition for superfluidity
[Blo08].
At temperatures T > Tc above the superfluid transition temperature, the 2D

Bose gas does not exhibit long range correlations. However, depending on the
phase space density of the gas, there are two regimes where correlations decay in
different ways. Assuming the non-interacting case, they can be found by Fourier
transforming the momentum distribution of the thermal gas, which one obtains by
setting N0 = 0 in equation (2.29) and plugging in the Bose distribution (2.24) in
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its momentum representation. In combination with the relation between the phase
space density n2Dλ

2
dB and the chemical potential µ given by equation (2.41), the

momentum distribution yields the following behavior of the correlation function
[Had11]:
In the non-degenerate regime, where n2Dλ

2
dB � 1, the Gaussian momentum

distribution leads to a fast Gaussian decay of correlations on the length scale
λdB/

√
π, similar to the 3D thermal gas:

g1(r) ≈ ne−πr
2/λ2

dB . (2.47)

In the degenerate regime, where n2Dλ
2
dB > 1, the momentum distribution still

has a Gaussian high-momentum tail. Thus, the correlations are Gaussian at
short length scales up to the thermal wavelength, and follow equation (2.47). At
longer length scales however, g1(r) is dominated by the low-momentum part of
the momentum distribution, which is enhanced above the Gaussian distribution
[Pro01, Pro02, Bis09] and can be described by a Lorentzian. At length scales above
λdB, the correlation function can thus be approximated by an exponential decay

g1(r) ≈ e−r/` , (2.48)

where the decay length ` can be approximated by ` ≈ λdBe
nλ2

dB/2/
√

4π. In the
presence of interactions, the behavior is qualitatively similar.
When analyzing the momentum distribution of the 2D gas, one has to take this

so-called pre-superfluid enhancement of low momenta into account. For T ≤ Tc,
the non-Gaussian fraction Nq/N of the momentum distribution is expected to be
roughly equal to the superfluid fraction Ns/N . At Tc however, the behavior of
Nq/N deviates from that of Ns/N . Whereas Ns/N jumps to zero at Tc, as will
be shown below, Nq/N smoothly decreases with temperature and stays finite for
T > Tc. This behavior has been experimentally verified in several independent
measurements [Cla09, Tun10, Hun11, Pli11].
The phase transition between the QLRO superfluid phase and the normal phase

is driven by the vortex excitations. For T > Tc, free vortices exist and destroy
the long range order. At Tc, vortices of opposite rotation form bound pairs. Their
rotations thus annihilate on length scales greater than the pair size, which is on
the order of the healing length ξ. Hence, only phonon excitations are relevant for
the long-range behavior of the system and one obtains the above described slow
algebraic decay of correlations.
This topological phase transition was first described by Berezinskii [Ber72] and

Kosterlitz and Thouless [Kos73] and is thus called Berezinskii-Kosterlitz-Thouless
(BKT) transition. It has been observed in superfluid Helium films [Bis78] as well
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as quasi-2D ultracold Bose gases [Had06, Krü07, Cla09, Des12].
To obtain more information about the phase transition, it is instructive to cal-

culate the free energy F = E − TS which is needed to create a vortex in the gas.
Assuming a circularly symmetric gas with radius R → ∞, it can be found to be
[Had11]

F = 1
2kBT

(nsλ2 − 4) ln
(
R

ξ

)
. (2.49)

Again, only the superfluid density of the gas is used for this calculation. Since the
thermal part of the gas has no long-range phase coherence, the vortex creates no
rotation in it.
The free energy cost F of a vortex shows a change of sign at nsλ2 = 4. For large

superfluid phase space densities nsλ2 > 4, F is positive. Thus, the creation of a
vortex would require energy. For small superfluid phase space densities nsλ2 < 4
however, F is negative and the system can minimize its energy by the creation
of free vortices. Since each vortex reduces the superfluid density ns even further,
the creation of more vortices becomes even more favorable. Thus, the superfluid
density exhibits a sudden jump between ns = 4/λ2

dB and ns = 0, which one can
associate with the critical temperature Tc [Nel77, Had11]. This is fundamentally
different to Bose-Einstein condensation in 3D, where the superfluid fraction in-
creases smoothly.
One can obtain an upper bound for Tc from ns = 4/λ2

dB under the assumption
that the whole sample becomes superfluid at the transition, i.e. ns = n2D. With
λdB = h/p = 2π~/

√
2mkBT , this leads to Tc = π2~2n2D/2mkB. By introducing

the Fermi temperature (equation (2.34)) as a density scale, one can rewrite this
upper bound for the critical temperature as Tc ≤ 0.125TF .
To obtain a better prediction for the critical temperature, one has to include

the non-superfluid fraction of the gas into the analysis. With the help of quantum
Monte Carlo calculations, one obtains the total phase space density at the critical
temperature ρc [Pro01, Had11]:

ρc = (nλ2
dB)c = ln(C/g̃2D) , (2.50)

where C = 380 ± 3 and g̃2D is the dimensionless 2D coupling constant defined in
equation (2.18). This relation is valid in the weak coupling limit (g̃2D � 1).
In the presence of a trap, where size of the gas becomes finite and the density

of states is modified, the condensation into a 2D BEC with TLRO is allowed
for finite temperatures. One expects this transition to occur below Tc [Blo08].
Thus, when cooling the gas down, one will first observe the above described BKT
transition into the QLRO superfluid phase at Tc as in the homogeneous case. The
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2.3. Many-Body Physics in Ultracold Quantum Gases

BKT transition will first occur in the middle of the trap, where the density (and
thus ρ) is the highest. As T is decreased further, the size of the superfluid region
will grow. This behavior leads to a suppression of the sudden jump in superfluid
density observed in the homogeneous system [Hol07]. At the same time, it also
makes the distinction between QLRO and TLRO difficult, since the superfluid
phase always has a finite size. It is therefore not clear whether it is possible to
observe a clear transition between the QLRO and the TLRO regime.

2.3.4. Interacting Fermi Gases: the BEC-BCS Crossover
The existence of the effectively bosonic two-body bound state in a Fermi gas (see
chapter 2.2.2) leads to the rich physics of the so-called BEC-BCS crossover. Here,
the gas can be continuously transferred from a gas of bosonic molecules to one of
unbound Fermions. After a brief discussion of the 3D BEC-BCS crossover, the
properties of the 2D BEC-BCS crossover are reviewed below with a focus on the
aspects relevant for this thesis. This ultimately leads to the phase diagram of
the strongly interacting Fermi gas in the BEC-BCS crossover, which is explored
experimentally in this thesis.

3D

For a Fermi gas with weakly repulsive mean field interactions, i.e. small positive
scattering length a, the two-body bound state exists and is deeply bound. The
resulting molecules consist of two fermions with half-integer spin and thus have an
integer total spin. For sufficiently large EB, the structure of the molecules is not
resolved, and they behave like effective bosons. For T → 0, these bosons condense
into the motional ground state, and form a superfluid molecular Bose-Einstein
condensate (BEC) as described in the previous chapter [Joc03, Gre03, Zwi03].
Hence, this limit is called the BEC limit.
Far on the other side of the resonance, where a is small and negative, no two-

body bound state exists. The system thus consists of free fermions with a weak
attractive mean field interaction. According to BCS theory [Bar57], two fermions of
opposite momentum at the Fermi surface can form a bosonic Cooper pair [Bar57].
It is important to note that the Cooper pairs are not two-body bound states,
but rather a many-body phenomenon which is caused by collective interactions of
the particles close to the Fermi surface. The Cooper pairs condense into a BCS
superfluid phase [Zwi05] with TLRO whose energy is lowered into the Fermi sphere
by the pairing energy ∆. Consequently, this limit is called the BCS limit.
By adiabatically ramping the magnetic field across the Feshbach resonance, it

is possible to smoothly transform the two limits of a BEC superfluid and a BCS
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superfluid into each other [Eag69, Leg80, Reg04, Bar04, Zwi04]. This is called the
BEC-BCS crossover. It has been subject to intense theoretical and experimental
studies and is treated in great detail in many books and review articles such as
[Gio08, Ket08, Zwe11].

2D

In 2D, the BEC and BCS limit are reached for ln(kFa2D)� −1 and ln(kFa2D)� 1,
respectively. Similar to the 3D case, a 2D Fermi gas on the BEC side of the
crossover consists of deeply bound bosonic molecules. However, there is no Bose-
Einstein condensation but a BKT transition into a superfluid state with QLRO
for T > 0 in the homogeneous case, similar as in the 2D Bose gas (see chapter
2.3.3).
Although for ln(kFa2D) > 0, the two-body bound state still exists, it is only

loosely bound, and can be broken up when µ and kBT become on the order
of its binding energy. Thus, the system becomes fermionic for sufficiently large
ln(kFa2D), in analogy to the 3D case.
The crossover point between bosonic and fermionic character can be defined

as the point where the chemical potential µ crosses zero [Lev14]. This can be
motivated by looking at the single-particle excitation spectrum [Zwi06, Lev14].
At zero temperature, it is given by

E(k) =

√√√√(~2k2

2m − µ
)2

+ ∆2 . (2.51)

For µ > 0, the minimum pairing gap ∆, which corresponds to the energy needed to
excite a particle out of the condensate, lies at finite momentum k. Thus, all pairing
occurs at this finite momentum, which can then be interpreted as the remnant of a
Fermi surface in the strongly interacting regime. For µ < 0, E(k) has its minimum
at k = 0, which resembles the bosonic case where no Fermi surface is present.
In mean-field theory, µ = 0 corresponds to ln(kFa2D) = 0[Lev14]. However,

quantum Monte-Carlo calculations see the crossover point further on the fermionic
side, at ln(kFa2D) ≈ 0.5 (see figure 2.6) [Ber11, Nga13, Lev14]. So far, experimen-
tal results have not given a conclusive answer [Som12].
In the fermionic limit with weak attractive interaction, the system can be de-

scribed by loosely bound Cooper pairs in the framework of BCS theory as in the
3D case. Similar to the 3D case, Cooper pairing occurs for sufficiently low temper-
atures. Due to the 2D geometry, there is no condensation into a TLRO superfluid
phase at finite temperatures, as already described for the bosonic case (see chapter
2.3.3). However, the formation of a QLRO superfluid phase with a finite pairing
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2.3. Many-Body Physics in Ultracold Quantum Gases

gap ∆ is possible.
It is worth noting that in 2D, the crossover can be driven by both the interaction

strength and the Fermi momentum kF , which directly corresponds to the density
of the gas. It is thus possible to access arbitrary points in the crossover by varying
the density at a constant interaction strength. This is fundamentally different from
the 3D case, where the crossover can only be driven by the interactions. One has
to keep this in mind when doing experiments, especially with (inhomogeneously)
trapped gases, where the density is influenced by the temperature as well as the
interaction strength.
There have been many theoretical approaches to compute Tc as a function of the

interaction parameter ln(kFa2D). However, a complete description including the
strongly interacting region has not been achieved so far, and one has to interpolate
between the two weakly interacting limits to obtain a complete phase diagram.
In the weakly interacting Bose limit (ln(kFa2D)� −1), the critical temperature

is [Pet03, Pro01, Pro02]

Tc
TF

= 1
2

[
ln C

4π + ln
(

ln(4π)− 2 ln(kFa2D)
)]−1

(2.52)

with the same C = 380± 3 as in equation (2.50).
For ln(kFa2D)� 1, the gas can be described by BCS theory and Tc is equivalent

to the temperature where the BCS pairing gap becomes zero [Bot06, Lev14],

Tc,BCS
TF

= 2eγ
πkFa2D

(2.53)

with the Euler constant γ ≈ 0.577. This formula does not take into account
particle-hole fluctuations around the Fermi surface. Introducing them into the
system with the help of the so-called Gor’kov-Melik-Barkhudarov (GMB) correc-
tion leads to [Pet03]

Tc
TF

= 2eγ−1

πkFa2D
. (2.54)

By interpolating between the solutions for Tc across ln(kFa2D) = 0, one can draw
an approximate phase diagram of the 2D Fermi gas in the BEC-BCS crossover
(Figure 2.6). Since both solutions for Tc increase for ln(kFa2D) → 0, one expects
a maximum in the vicinity of the crossover point.

Increased Critical Temperature in Quasi-2D

In a recent theoretical work, the critical temperature is calculated in a quasi-2D
geometry in the BCS limit [Fis14]. The gas is strongly confined in axial direction
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Tc,BCS
μ ≈ 0 

T
c/

T
F

0.2

0.1

0
5 0 5

ln(kFa2D)

Tc

Figure 2.6.: Schematic phase diagram of the 2D Fermi gas in the BEC-BCS
crossover. The gray area represents the superfluid QLRO phase.
The transition temperature Tc to the white normal phase is given
by equation (2.52) for ln(kFa2D) � −1 and by equation (2.54) for
ln(kFa2D) � 1. Across ln(kFa2D) = 0, Tc is interpolated. The blue
dashed line shows the critical temperature obtained from BCS theory
(equation (2.53)). The red dashed line corresponds to the crossover
point, which is given by µ = 0. Taken from [Lev14].

but homogeneous in radial direction. Using BCS theory and assuming infinitely
many harmonic axial trap levels, it is shown that when EF/~ωz is increased, Tc/TF
also increases significantly. The increase continues in the transition regime between
quasi-2D and 3D, where a small number of axial trap levels is populated. This
is interesting as it might help explain the still not well understood high critical
temperatures which are measured in the quasi-2D electron gas in high-Tc super-
conductors.
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3. Experimental Setup
In this chapter, the experimental setup which was planned and built during this
thesis is described. In order to minimize downtime and achieve high control over
the sample, we kept the design as basic as possible and focused on reliability and
state-of-the-art technology in each component.
All experiments are conducted in an ultra-high vacuum chamber, which we

designed to provide as much optical access to the sample as possible. Fermionic
6Li atoms are evaporated in an oven and are collimated into an atom beam. We
slow atoms from the beam from approximately 1500m/s to 50m/s with the help of
a Zeeman slower and subsequently capture them in a magneto-optical trap (MOT).
There, we cool a gas of approximately 108 atoms down to several 100µK. In the
next step, we transfer it into an optical dipole trap. There, we evaporatively cool
the atomic gas of states |1〉 and |2〉 into quantum degeneracy at several 10 nK. We
transfer the resulting BEC of approximately 105 diatomic molecules into a single
layer of a standing-wave optical dipole trap. It provides a pancake-shaped trapping
potential with a large aspect ratio which enables us to study the gas in the quasi-
2D regime. In order to manipulate the atoms, we are able to apply homogeneous
magnetic fields as well as magnetic field gradients. After preparing the sample
with the desired parameters, we destructively detect its density distribution by
means of absorption imaging. In this technique, the sample casts a shadow in a
flash of resonant light. We record this shadow on a CCD camera. The experiment
cycle takes approximately 10 seconds, and we repeat it several times for each set
of parameters to obtain sufficient statistics.
Since most parts of the apparatus needed for the above mentioned steps have

been previously described in various Bachelor- and Master theses, this chapter only
briefly describes the setup. For more detailed descriptions and characterizations,
the reader is referred to the respective theses.

3.1. Vacuum Chamber
In order to conduct experiments with ultracold gases, an excellent isolation from
the environment is necessary. Since the temperature of the sample and the depth
of the confining trap is usually on the order of 100 nK, collisions with a thermal
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background gas would quickly destroy the sample. Hence, the experiments are
conducted in an ultra-high vacuum environment to minimize these collisions. At
the same time, it is crucial to have good optical access to the sample, both for the
application of optical trapping potentials and for imaging. We thus use a spherical
octagon as main chamber, which allows for full optical access on four axes, through
six horizontal viewports with a numerical aperture of NA≈ 0.15, and two vertical
reentrant viewports with NA≈ 0.88 (see figure 3.1).

Figure 3.1.: Main chamber with MOT beams (red arrows), MOT coils (blue), and
offset field coils (green), and the respective water cooled copper heat
sinks (brown). In addition to the Zeeman slower axis, optical access
is possible in three horizontal axes and one vertical axis. Taken from
[Wen13].

The complete vacuum chamber is shown in figure 3.2. It is pumped by titanium
sublimators and ion pumps, which do not create mechanical vibrations. The pres-
sure is approximately 1 · 10−11 mbar at the vacuum gauge close to the window of
the Zeeman slower beam. It should be considerably lower in the main chamber
which is coated with a non-evaporable getter coating (NEG). This coating provides
additional pumping speed at the exact location where low pressure is crucial. More
information on the vacuum setup can be found in [Rie10].
The optics for trapping and imaging in the horizontal axes are mounted on a

U-shaped optical breadboard, which encloses the vacuum chamber 10 cm below
the optical axes. In order to minimize vibrations and warping, it is machined from
25mm cast aluminum and mounted on the optical table with approximately 30
aluminum posts with a diameter of 38mm. The optical setup on the breadboard
is shown in figure 3.3.
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(1)

(2)

(3)

(4)

(5) (5)

(6)

(6)

Figure 3.2.: Vacuum chamber. 6Li atoms are evaporated in the oven (1). The
resulting atom beam is collimated by an aperture and slowed down in
the Zeeman slower (2) by a resonant laser beam entering the chamber
through the window (3). The atoms are then trapped in the main
chamber (4). The vacuum is maintained by titanium sublimators in
the two pumping towers (5), and by two ion pumps (6). Additionally,
there is a non-evaporable getter coating (NEG) in the main chamber.
The Zeeman slower pipe also acts as a differential pumping stage be-
tween the main section and the oven section, where the pressure is
higher. Taken from [Rie10].

3.2. Magneto-Optical Trap and Zeeman Slower

At the beginning of each experimental cycle, we capture and precool 6Li atoms
provided by an atom beam from the 350 ◦C oven with the combination of a Zeeman
slower and a magneto-optical trap (MOT).
The atoms leave the oven with a longitudinal velocity of approximately 1500m/s.

In the Zeeman slower, they are decelerated by the subsequent absorption and spon-
taneous emission of photons from a resonant laser beam which is directed against
their propagation direction. The deceleration over the length of the Zeeman slower
tube leads to a spatially varying Doppler shift of their resonance frequency. To
compensate for this Doppler shift, the resonance frequency is Zeeman shifted by a
spatially varying magnetic field along the propagation direction [Met02]. We use
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Figure 3.3.: Optical setup around the main chamber. The imaging beams as well
as the beams for crossed beam optical dipole trap (CBODT), the
standing wave trap (SWT) and the 2D optical lattice are shown. The
MOT beams are omitted for clarity. Adapted from [Nei13].34
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a decreasing field geometry, so that the anti-Helmholtz field of the MOT coils can
provide the Zeeman slower field on the last centimeters. At the end of the Zeeman
slower, a large fraction of the atom beam has been slowed down to a velocity of
approximately 50m/s and can thus be captured by the MOT.
In the MOT, the atoms are trapped and cooled by the combination of three

slightly red-detuned pairs of retroreflected laser beams and the zero-crossing of an
anti-Helmholtz magnetic field [Met02]. This combination provides both a restoring
force, which keeps the atoms in the trap, and a damping force, which slows down
the motion of the atoms and thus cools them. Due to the continuous scattering of
atoms with resonant photons, the minimum achievable temperature in the MOT
is limited by the so-called Doppler temperature, which is in the case of 6Li given
by approximately 140µK.
The three retroreflected pairs of 11mm diameter MOT beams and the MOT coils

which create the anti-Helmholtz field can be seen in figure 3.1. While operating
the MOT, we keep the magnetic field gradient provided by the anti-Helmholtz field
at approximately 30G/cm, which corresponds to a current of approximately 32A
in the MOT coils.
The Zeeman slower and the MOT use the 6Li D2 line, which corresponds to

the transition between the 2 2S1/2 ground state and the 2 2P3/2 excited state and
lies at approximately 671 nm. Whereas the hyperfine splitting of the excited state
cannot be resolved, that of the ground state is 228.2 MHz wide. This makes it
necessary to use two laser frequencies labeled cooler and repumper for the Zeeman
slower and the MOT. In this way, both transitions are driven and atoms do not
accumulate in an unaddressed dark state.
The light is provided by a diode laser with a tapered amplifier (Toptica TA pro),

which is beat-offset locked [Sch99] to a separate spectroscopy setup. The beam is
split up into a cooler and a repumper fraction, which are shifted by ±114.1MHz
by two acousto-optic modulators (AOMs). The detuning of both fractions is then
adjusted by the the beat-offset lock. The MOT- and Zeeman slower beams are
transferred to the breadboard around the vacuum chamber by glass fibers. The
total laser power in each beam after the fiber is approximately 10− 20mW for the
MOT beams, and 30− 60mW in the Zeeman slower beam, depending on the life
cycle of the tapered amplifier chip.
The combination of Zeeman slower and MOT leads to loading rates of up to

3 · 108 atoms/s at moderate oven temperatures of 350 ◦C, which allow for an oven
lifetime of several years. Thus, after a loading time of only 1 s,1 the MOT provides
a sufficient number of atoms at a temperature of several 100µK which can then be

1Depending on the life cycle of the tapered amplifier chip and thus the available laser power,
we load the MOT for to up to 3 s.
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transferred into the crossed beam optical dipole trap (CBODT) for further cooling.
More information on the setup and performance of Zeeman Slower and MOT can
be found in [Rie10] and [Sim10].

3.3. Optical Dipole Traps
After the initial trapping and precooling of the gas in our MOT, the further cool-
ing steps and all the experiments are performed in optical dipole traps (ODT).
They are realized by focused non-resonant laser beams and provide a conservative
potential which is proportional to the laser intensity. This makes it possible to
realize trapping potentials with various shapes, especially when interference effects
are used. Furthermore, the optical dipole potential is independent of additional
magnetic offset fields or gradients. Optical dipole traps thus have a great advan-
tage over magnetic traps, where it is not possible to apply arbitrary additional
magnetic fields.
In this chapter, our different optical dipole traps are described after a brief

review of the working principle of an ODT.

3.3.1. Working Principle
The optical dipole potential that an atom experiences in a light field can be in-
tuitively understood in a classical picture as explained in [Gri00]. In this picture,
the oscillating electric field of the laser beam induces a dipole moment in the
atom. The dipole moment oscillates in phase with the field for laser frequencies
ωL smaller than the atom’s resonance frequency ω0, and out of phase for ωL > ω0.
Thus, for a red-detuned laser beam (ωL < ω0) the dipole potential is attractive
and the atom is pulled towards the highest intensity. For a blue detuned beam
(ωL > ω0), the potential is repulsive and the atom is pushed away from the highest
intensity.
For large detuning and negligible saturation, the dipole potential and the scat-

tering rate of photons with the trapped atoms can be written as

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ωL
+ Γ
ω0 + ωL

)
I(r) . (3.1)

and
Γsc(r) = 3πc2

2~ω3
0

(
ωL
ω0

)3
(

Γ
ω0 − ωL

+ Γ
ω0 + ωL

)2

I(r) . (3.2)

Here, the damping rate Γ is given by the line width of the spontaneous transition,
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c is the speed of light, and I(r) is the laser intensity.
Whereas both Udip and Γsc depend linearly on I, the dependence on the detuning

ω0−ωL is linear for Udip and quadratic for Γsc. One can thus minimize the scattering
rate for a given potential depth by choosing a large detuning. Since every scattering
process heats the sample, this is desirable. At the same time, a large detuning
also makes high laser intensities necessary to achieve sufficiently deep traps.
In our experiments, we use red-detuned (and thus attractive) optical dipole traps

at a wavelength around 1064 nm, which is widely available. This relatively large
detuning from the transition at 671 nm leads to low scattering rates. At the same
time, the necessary laser powers of up to 200W are still experimentally feasible.

3.3.2. 3D Crossed Beam Optical Dipole Trap
After the precooling stage in the magneto-optical trap, we transfer the sample into
a crossed beam optical dipole trap (CBODT), where we then evaporatively cool
it into the quantum degenerate regime. Figure 3.3 shows the beam path of the
CBODT (red line). The focused beam intersects with its own reflection under an
angle of 12 ◦ in the middle of the main chamber. In order to avoid interference
effects, the polarization of the reflected beam is rotated by 90 ◦ with the help of
a waveplate. To facilitate the transfer into a single layer of the quasi-2D standing
wave trap (see chapter 3.3.3), we use elliptically focused beams for the CBODT.
The foci of the beam have an aspect ratio of approximately 1 : 5.3 which leads to a
surfboard shaped trap with an aspect ratio of 1/ωCBODT

x : 1/ωCBODT
y : 1/ωCBODT

z ≈
8.3 : 44 : 1, which we determine from the harmonic trapping frequencies ωCBODT

i

in the respective direction. To further optimize the transfer, we can modulate
the trap position in horizontal and vertical direction with the help of two crossed
AOMs in the beam path, and thus create a time-averaged potential. The transfer
from the CBODT into the quasi-2D trap is described in chapter 4.2.
The 1068 nm laser beam is produced by an IPG Photonics YLR-200-LP Ytter-

bium fiber laser, which yields up to 200W. During the transfer from the MOT
into the CBODT, we use the full power of the laser, which leads to a trap depth
of more than 1.5mK. This is deep enough to capture the precooled atoms which
have a temperature of several 100µK.
Directly after the transfer, we ramp the laser power down to 40W to reduce

thermal lensing. We then use the AOMs to attenuate the beam and thus further
lower the trap depth during forced evaporation. We control the laser power with
a feedback loop which controls the AOMs and regulates on the signal of two
photodiodes. They are placed behind a dielectric mirror in the CBODT beam
path and pick up the small fraction of the beam which is transmitted through the
mirror. We use two photodiodes since we tune the laser power by approximately
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four orders of magnitude. One of them gets a small amount of the transmitted
light and is used at high powers, whereas the other one gets more light and is used
at low powers. Thus we avoid thermal effects on the photodiodes at high laser
powers and extend the dynamic range of the setup while keeping the signal to
noise ratio sufficiently high. More information on the crossed beam optical dipole
trap can be found in [Boh12].

3.3.3. 2D Standing Wave Trap
In order to reach the quasi-2D regime, we transfer the quantum degenerate sample
prepared in the CBODT into a single pancake shaped interference maximum of a
standing-wave optical dipole trap (SWT).

The Quasi-2D Regime

The gas is in the quasi-2D regime when excitations in one dimension are frozen
out. This can be achieved with the help of a strong confinement in this dimension
which shifts the first excited state to an energy which is higher than the energy
scale of the sample. For a quantum gas in a harmonic trap, this can be realized
by a large aspect ratio ωx, ωy � ωz, where ωx,y,z is the trapping frequency in the
respective direction. The quasi-2D regime is entered when both µ < ~ωz and
kBT < ~ωz are fulfilled, where µ is the chemical potential and kBT is the thermal
energy of the gas. Figure 3.4 shows a quasi-2D ideal Fermi gas, where µ = EF , at
zero temperature.

EF

ħω
z

Figure 3.4.: Harmonically trapped Fermi gas at T = 0 in the quasi-2D regime in
a radially symmetric trap. Occupied radial (axial) levels are depicted
blue (black). Unoccupied levels are grayed out. The energy of the
highest populated level is below that of the first axially excited level
(EF < ~ωz), and thus the system is kinematically two-dimensional.

In this limit, the atoms continuously fill up the trap levels starting from the
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lowest energy. The number of atoms which fit into the trap without populating
the first excited z-level can thus be found by counting the trap levels. The criterion
for a quasi-2D sample is

nx~ωx + ny~ωz < ~ωz , (3.3)

where nx,y is the number of populated levels in x and y direction, respectively.
This leads to the maximum number of populated levels Ncrit, which is at the same
time the critical number of atoms per spin state:

Ncrit = 1
2nx,maxny,max = 1

2
ω2
z

ωxωy
. (3.4)

Although this calculation does not take into account finite temperatures, interac-
tions, and anharmonicities, the observed strong dependence on the aspect ratio
always holds. In order to realize a quasi-2D quantum gas in a trap, it is thus
crucial to have a trap with the maximum feasible aspect ratio.

Experimental Realization

In our setup, we use the standing wave interference pattern of two intersecting laser
beams as a trap for the quasi-2D gas. This approach has the advantage that it is
possible to realize very large aspect ratios. However, there is also a disadvantage:
the standing wave creates a whole stack of traps rather than just one. Thus, one
has to make sure that tunneling between the layers is negligible. In addition, it is
challenging to load the sample into just one of the layers, as will be discussed in
chapter 4.2.
The standing wave trap (SWT) consists of two 1064 nm laser beams which inter-

sect under an angle of approximately 14 ◦ in the vertical plane (green line in figure
3.3). They produce a vertical interference pattern with a wavelength of approx-
imately 4.4µm. At a typical trap depth of approximately 500 nK, the harmonic
oscillator length in vertical direction is `z ≈ 550 nm, and tunneling between the
layers is negligible. In order to achieve a round potential in the horizontal plane,
we elliptically focus the beams with an aspect ratio of 1 : 8.2 The waists in the
focal plane are wvert0 ≈ 75µm and whor0 ≈ 600µm. This leads to harmonic trapping

2The ellipticity has two additional benefits: it reduces the total laser power at a given trap
depth, and leads to bigger waists on the optics. This reduces thermal lensing effects.
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frequencies of

ωx = 2π(14.10± 0.02)Hz
ωy = 2π(14.02± 0.03)Hz
ωz = 2π(5.53± 0.03)kHz

at a trap depth of approximately 500 nK, which is used for the presented exper-
iments. The SWT thus has an aspect ratio of 392 : 394 : 1 and a cylindrical
symmetry of 99.5%. According to equation (3.4), it should be possible to prepare
samples of up to Ncrit ≈ 77 000 atoms per spin state in the quasi-2D regime. How-
ever, this number is only a coarse estimate, since it neglects the effects of finite
temperature, interactions, and anharmonicities in the radial potential. Addition-
ally, the total radial trapping potential has a small contribution of an additional
magnetic potential, which will be described in chapter 3.4. Thus, we have to mea-
sure Ncrit to make sure our experiments are conducted in the quasi-2D limit. This
measurement will be explained in chapter 4.3.
In order to obtain a good interferometric stability of the SWT, we carefully

designed the mechanical setup. The elliptical beam is created by a cylindrical
telescope and then focused by a f = 900mm lens (see figure 3.3). It then enters the
interferometer setup depicted in figure 3.5. There, it is split up by a non-polarizing
50 : 50 beam splitter cube and then reflected into the experiment chamber by two
mirrors. The beam path is kept symmetric after the beam splitter to avoid drifts
of the interference pattern due to changes in air pressure. A mount for a waveplate
is included in the setup. With the help of a λ/2 waveplate, the polarization of the
upper beam can be rotated by 90 ◦. Thus, the interference pattern can be removed
from the intersection of the beams. This is useful for adjusting the height of the
intersection to the position of the CBODT.
All components of the interferometer are mounted onto a solid 50mm aluminum

block for mechanical and thermal stability. The setup is further stabilized by the
solid front and back covers. During our experiments, it is closed by an aluminum
sheet lid (not shown in the figure) to reduce turbulent air flow. In addition, also
the beams outside the interferometer are protected from air flow by aluminum
tubes.
To measure the stability of the interference pattern under realistic conditions

we loaded atoms into several pancakes and measured their axial position (method
see chapter 4.2.1). The observed drift of the interference pattern was smaller than
0.5µm which corresponds to a phase drift < λ/8 over 6 days. Thus, the passive
stability is sufficient and no active stabilization is necessary.
The light for the SWT is provided by a 50W Nufern SUB-1174-22 fiber amplifier
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Figure 3.5.: Mechanical setup of the standing wave trap interferometer. The fo-
cused laser beam (dark red) enters the interferometer setup under an
angle of 45 ◦ from the front. It is split up by a non-polarizing 1/2
inch beam splitter cube. The two resulting beams are reflected into
the chamber under an angle of ±7 ◦ by two 1/2 inch mirrors. There
is a mount for an optional waveplate in the upper beam path, which
can be used to rotate the polarization and turn off the interference
pattern. Taken from [Wen13].

which is seeded by an Innolight Mephisto-S 500 NE solid state laser at 1064 nm.
As in the case of the CBODT, the power is regulated with an AOM controlled by a
feedback loop. It is then coupled into a OZ optics high power fiber to transfer it to
the breadboard at the experiment chamber. For the trap depth of approximately
500 nK used in our experiments, we use approximately 3W after the fiber.
More details about the design of the interferometer can be found in [Boh12].

The setup and performance of the SWT are described in detail in [Nei13].

3.3.4. Optical Lattice
For future experiments, we already set up a 2D optical lattice in our apparatus.
Until now, it was only used to calibrate the imaging magnification by Kapitza-
Dirac diffraction [Kap33, Fre01] of atoms on the lattice potential (see chapter
3.5).
The optical lattice consists of two separate 1D lattices which intersect under

an angle of 90 ◦. The optical setup is shown in figure 3.3 (yellow beam path).
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Unlike in most other optical lattice setups, the beams are not retroreflected but
intersect with their own reflection under a small angle of approximately 12 ◦. This
is necessary for the high required laser power of several Watts. A retroreflected
beam would hit the fiber with which the light is transferred to the main breadboard
and could melt the fiber tip due to its high power.
The light is provided by the Nufern fiber amplifier also used for the SWT and

has a wavelength of 1064 nm. Together with the angle of the lattice beams, this
leads to a lattice spacing of 536 nm. As in the other optical dipole traps, the
intensity can be tuned with an AOM and is controlled by a feedback loop which
uses the signal of a photodiode behind a mirror in the beam path.
In order to avoid interference between the two lattice axes, their polarizations

are rotated by 90 ◦ with respect to each other. The polarization of lattice beam 2
is horizontal and thus the same as that of the SWT. To avoid interference here,
the frequencies of the two beams are detuned from each other by 200MHz with
the help of the intensity control AOMs.
More information about the lattice setup can be found in [Bec13].

3.4. Magnetic Fields
Magnetic fields are an important tool to manipulate our sample. They have two
important effects on the ultracold gas:

• As described in chapter 2.2.2, the scattering length a and thus the interpar-
ticle interaction strength in the gas can be tuned with the help of a magnetic
Feshbach resonance. We do this by applying a homogeneous magnetic off-
set field. At the same time, this field also sets the quantization axis to the
vertical z-direction.

• Due to their magnetic moment µ, atoms in a magnetic field B along the quan-
tization axis experience a magnetic potential Umag(r) = −µBz(r). Magnetic
field gradients thus result in a force on the atoms.

We can apply magnetic offset fields and gradients with two pairs of coils in our
setup, the offset field coils (green in figure 3.1) and the MOT coils (blue in figure
3.1). Both coil pairs have an (anti-) Helmholtz geometry along the vertical axis of
the main chamber.

3.4.1. Offset Field Coils
The offset field coils consist of 30 windings of 0.5×7.5mm Kapton coated wire with
an average radius of 44mm. They are mounted in the reentrant vertical viewports
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of the main chamber in an approximate Helmholtz configuration (green in figure
3.1). To avoid overheating, the coils are glued onto custom-designed water cooled
copper heat sinks. For a better heat conductance between the coil and the heat
sink, we removed the Kapton coating on one side of the coil with a lathe, and
glued the resulting flat surface onto the heat sink with a thermally conducting but
electrically insulating diamond filled epoxy [Zür09].
The coils can provide a homogeneous magnetic field up to B = 1500G at the

position of the trapped sample at a current of 220A. This allows us to use the
broad Feshbach resonance between state |1〉 and |2〉 at B0 = 832.2G (see figure
2.3). The inductance of the coils allows for a maximum ramping speed of dB/dt ≈
−2.4G/µs, which can be achieved by suddenly switching the current off.
Since the coils are mounted slightly further apart than Helmholtz configuration,

the magnetic field has a saddle point. A simulation of the axial magnetic field
is shown in figure 3.6. In axial direction, the field has its maxima approximately
10mm above and below the center. For the highfield seeking atoms, this leads
to a weak anti-confining potential along the axial direction. It is on the order of
2π × 20Hz and thus negligible compared to the confinement of the SWT, ωz ≈
2π × 5.5 kHz.
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Figure 3.6.: Offset field in axial direction as a function of axial (A) and radial (B)
position. The data is obtained from a numerical simulation of our
offset field coils at an offset field of B = 692G. Due to the imperfect
Helmholtz configuration of the coils, the magnetic field has a saddle
point. For our highfield-seeking atoms, it acts as an anti-confining
(confining) potential in axial (radial) direction.

In radial direction, the saddle leads to a weak confining potential which is almost
perfectly harmonic even for large radii of several mm. We measured its trapping
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frequency to be ωr,mag ≈ 0.39Hz
√
B[G], which corresponds to 2π×(10.2±0.03)Hz

at B = 700G. This radial confinement has two desired effects: it improves the
cylindrical symmetry of the standing wave trap, and enables us to perform a
matter wave focusing technique. This technique allows us to measure the radial
momentum distribution of our gas and will be described in chapter 4.6. In order
to make use of the radial magnetic confinement and to minimize vertical forces
on the sample, we carefully align the optical dipole traps to the magnetic saddle
point.
The combined trapping frequencies of the SWT and the magnetic saddle point

potential are

ωx = 2π(17.40± 0.06)Hz
ωy = 2π(17.34± 0.06)Hz
ωz = 2π(5.53± 0.03)kHz

at B = 700G and a trap depth of approximately 500 nK.
We control the current in the offset field coils by a digital PID feedback loop

which measures the current with a current transducer. When the field has to
be constant with a high precision, we use an amplifier circuit to enhance the
precision of the 16 bit input of the controller. A differential amplifier amplifies
the difference between the signal from the current transducer and a high precision
reference voltage. The result is then used to obtain the error signal for the PID
loop. This enables us to obtain a magnetic field stability of approximately 1mG at
an offset field of B = 800G. This corresponds to a relative stability of 1.25 · 10−6.
More information on the magnetic field stabilization can be found in [Pre14].
By inverting the current through the upper coil with the help of an H-Bridge

circuit, we can change the configuration of the offset field coils to an anti-Helmholtz
configuration. Thus, we can also use them to create magnetic field gradients. This
is useful during the transfer from the MOT to the CBODT: The zero point of the
anti-Helmholtz MOT field is slightly displaced from the saddle point of the offset
field coils, to which the CBODT is adjusted. Shortly before the transfer, we thus
turn the MOT coils off and create the anti-Helmholtz field with the offset field
coils instead. In this way, we shift the zero point of the MOT field and thus the
trapped atoms to the position of the CBODT.

3.4.2. MOT Coils
The MOT coils consist of four axially stacked layers of 25 windings of 1 × 5mm
Kapton coated wire. They are mounted on the top and bottom of the main cham-
ber (blue in figure 3.1) in an approximate anti-Helmholtz configuration and have
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water cooled copper heat sinks. They can provide magnetic field gradients up to
approximately 85G/cm at 70A. By inverting the current, we can also invert the
direction of the magnetic field gradient. During the different phases of the experi-
mental sequence, we use the gradient for the magneto-optical trap, to compensate
gravity, to pull atoms up or down, and for the tomographic measurement described
in chapter 4.2.1.
Similar to the current in the offset field coils, we measure the current through

the MOT coils with a current transducer and use it as an error signal for a digital
PID feedback loop. This allows us to stabilize the gradient to a relative precision
of approximately 10−3.

3.5. Absorption Imaging
To obtain information about our sample, we rely on absorption imaging. In this
method, a pulse of resonant light is shined on the atom cloud and its shadow is
recorded on a camera.
In our setup, we are able to perform absorption imaging in all four optical axes

of the main chamber. The imaging beams (dark gray) and the corresponding
optics and cameras are shown in figure 3.3. For the experiments presented here,
we mainly use the vertical imaging axis, which images the radial plane of the quasi-
2D sample. For the tomographic measurement of the atom distribution over the
layers of the SWT (see chapter 4.2) and the measurement of the axial momentum
of the sample (see chapter 4.3), we use the horizontal axis of lattice beam 1.
In both axes, we use AVT Stingray F-145B FireWire cameras. They have a

monochrome chip with 1388 × 1038 6.45µm square pixels, a dynamic range of
14 bit, and a specified quantum efficiency of approximately 44 % at the used wave-
length of 671 nm. In both axes, we obtain a magnification of approximately 2
with the help of telescopes in the imaging axis (magvert = 1.98 ± 0.12, maghor =
2.04± 0.01).
We calibrate the magnification by means of Kapitza-Dirac diffraction [Kap33,

Fre01] of atoms on the lattice potential. Similar to light diffracted on a grating,
the atoms absorb momenta which are integer units of the lattice wave vector klat.
By measuring their position after a defined time-of-flight, we can obtain their
momentum distribution and thus klat. Since we know the lattice spacing (see
chapter 3.3.4), we can thus calibrate the imaging magnification. The calibration
procedure is described in [Bec13].
The imaging beam is provided by a Toptica DL Pro laser which is beat-offset

locked to the same 671 nm 6Li D2 transition spectroscopy setup as the MOT laser.
As the transition frequency tunes with the magnetic offset field B, we tune the
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3.5. Absorption Imaging

offset to adjust the laser frequency for the respective field. By quickly switching
the beam on and off with an an AOM, we create imaging pulses with durations of
approximately 10µs.

46



4. Creating and Probing a 2D Fermi
Gas

This chapter explains how we create and probe a quasi-2D Fermi Gas of ultracold
atoms in the strongly interacting limit. Parts of its content have been published
in [Mur14b, Rie14].
The chapter starts by describing the creation of a molecular BEC, which is

the basis for all described experiments. In the next step, we are able to transfer
the molecular BEC into a single layer of the large aspect ratio standing wave
trap (SWT). The necessary techniques are described in chapter 4.2. In addition,
the tomographic measurement technique we developed to obtain the distribution
of the sample over the layers of the SWT is introduced. After the transfer, we
ensure that the sample reaches the quasi-2D regime by probing its axial momentum
distribution and adjusting the number of atoms. This is described in chapter 4.3.
The final step of the preparation is the tuning of the interaction strength and
temperature, which enables us to map out the phase diagram of the system. It is
described in chapter 4.4.
We probe the sample by means of absorption imaging. Chapter 4.5 describes

the careful calibration of the imaging parameters which is necessary in order to
extract quantitative information. In addition to the in-situ density distribution of
the sample, we also measure its pair momentum distribution. For this, we use a
matter-wave focusing technique, which is described and characterized in chapter
4.6.

4.1. The Starting Point: Creation of a Molecular
BEC

The starting point for our experiments is always a Bose-Einstein Condensate
(BEC) of molecules, which we create in the crossed beam optical dipole trap
(CBODT) described in chapter 3.3. Figure 4.1 shows a simplified sketch of the
experimental sequence.
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MOT laser power off

Zeeman slower off

MOT laser detuning

MOT coils grav. comp.

200 W

~ 40 W

~ 4 mW
CBODT laser power

Helmholtz field 0 G
795 G

load MOT transfer into CBODT evaporative cooling

1000 ms 4000 ms100ms

Figure 4.1.: Preparation of a molecular BEC. The sequence can be divided into
three phases: loading of the MOT, transferring the atoms into the
CBODT, and evaporative cooling in the CBODT. Only the most im-
portant experimental parameters are shown and the sketch is not to
scale. Adapted from [Nei13].

In the first phase, we load the MOT for approximately 1 s.1 During this time,
the Zeeman slower light and magnetic field are on. The MOT beams are running
on maximum power at a large red-detuning of approximately −40MHz. This leads
to a large capture radius as well as a low atom density in the MOT, which reduces
the rate of two-body losses. The MOT-coils provide the anti-Helmholtz MOT field
with a gradient of approximately 30G/cm. We thus obtain a gas of approximately
108 atoms at a temperature of a few 100µK.
In the subsequent phase, we transfer the precooled atoms into the CBODT.

At the beginning of this phase, we turn the Zeeman slower off. To compress the
MOT, we reduce the detuning to a few MHz, while at the same time reducing the
laser power to minimize photon scattering and thus the temperature. When the
MOT is sufficiently compressed, we turn on the CBODT at its maximum depth,
which is more than 1.5mK. We then turn off the MOT beams and the MOT field.
By turning the repumper fraction of the MOT beams off a few milliseconds faster
than the cooler fraction, we pump all atoms in the F = 1/2 hyperfine state of the
2 2S1/2 ground state. In the presence of a magnetic offset field, we thus obtain a
mixture of atoms in the Zeeman sublevels |1〉 and |2〉.

1Depending on the life cycle of the MOT laser tapered amplifier chip and thus the available
laser power, we load the MOT for up to 3 s.
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After the transfer, we evaporatively cool the gas into quantum degeneracy in the
CBODT. We compensate gravity by applying a small gradient with the MOT coils
and apply a magnetic offset field of B = 795G. Then we perform forced evaporative
cooling [Met02] by continuously decreasing the CBODT laser power and thus the
trap depth. The magnetic offset field leads to a strongly repulsive mean field
interaction and thus a fast thermalization. At sufficiently low temperatures, the
atoms form diatomic molecules. At even lower temperatures, these molecules
condense into a molecular BEC.
At the end of the evaporation ramp, we thus obtain a practically pure BEC of

approximately 100 000 diatomic molecules consisting of atoms in states |1〉 and |2〉
at a temperature of some 10 nK. The preparation sequence takes approximately
5 s, which allows for large repetition rates of our experiments.

4.2. Loading a Single Layer
In the next step, we transfer the sample into the standing wave trap (SWT) de-
scribed in chapter 3.3.3. For our experiments, it is crucial to transfer the gas into
one single layer, and to minimize the fraction in the neighboring layers. This is
challenging due to the small distance between the layers.
It is impossible to optically resolve atoms in the individual layers with the help

of Gaussian beam optics. This is due to the combination of their small distance of
4.4µm with their radial extension of approximately 200µm. The depth of focus
as a function of the resolution in the focal plane w0 is on the order of the Rayleigh
range zR = πw2

0/λ. For our wavelength λ ≈ 671 nm and a resolution of 2µm, the
depth of focus is on the order of zR ≈ 20µm, which is an order of magnitude too
small compared to the extension of the sample.
In order to measure the distribution of the atoms over the SWT layers, we

thus developed a tomographic measurement which is described below. With this
diagnostic tool at hand, we were able to optimize the transfer and thus load more
than 89 % of the sample into a single layer, which is sufficient for our experiments.
The transfer is described after the tomographic measurement in chapter 4.2.2.

4.2.1. RF-Tomography
For the tomographic measurement of the atom distribution over the SWT layers,
we utilize the transition into the third Zeeman sublevel labeled |3〉 (see figure
2.2). Atoms can be transferred from state |2〉 to |3〉 by the application of a radio-
frequency (RF) pulse. The transition frequency ν|2〉|3〉 depends on the magnetic
offset field [Bre31]. We make ν|2〉|3〉 dependent on the axial coordinate z by applying
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4.2. Loading a Single Layer

a magnetic field gradient along this axis. We then drive the RF transition and
measure the number and position of the transferred atoms with state selective
absorption imaging. Scanning ν|2〉|3〉 then enables us to resolve the individual
layers. Figure 4.2 visualizes the concept of a single measurement.
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Figure 4.2.: Conceptual sketch of the tomographic measurement. The transition
frequency ν|2〉|3〉 between states |2〉 and |3〉 is made position dependent
by the application of a magnetic field gradient. Then, the |2〉 → |3〉
transition is driven. Fitting the obtained density distribution of atoms
in state |3〉 with a Gaussian allows to determine the atom number and
their position. Adapted from [Nei13].

For the tomographic measurement, we first transfer a molecular BEC consisting
of atoms in states |1〉 and |2〉 from the CBODT into the SWT. We do this by
ramping the depth of the SWT to approximately 500 nK over approximately 500ms
and simultaneously ramping the CBODT off. To exclude interaction effects, we
remove all atoms in state |1〉 from the sample with the help of an imaging pulse
resonant with these atoms. To minimize interactions between atoms during this
process, we first ramp the magnetic offset field to B = 1000G, where the sample
consists of weakly interacting unbound atoms at our temperatures. We still observe
heating of the remaining atoms, but it is small compared to the trap depth and
therefore should not change the distribution over the layers.
We then apply a strong additional magnetic field gradient of approximately

70G/cm along the z-axis with the MOT coils and drive the transition to state |3〉.
To ensure that not too many atoms are lost due to the gradient, we have to increase
the depth of the SWT to the maximum feasible value,2 which is approximately

2This trap depth corresponds to the largest laser power which we can currently transmit through
the high-power optical fiber (see chapter 3.3.3) without dropping to a coupling efficiency below
60 % at any point during the necessary several 100 repetitions of the measurement. At lower
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1µK.
Subsequently, we take a state-selective absorption image of the transferred atoms

along the horizontal imaging axis. By recording the number of transferred atoms
as a function of ν|2〉|3〉, we can thus measure the distribution of atoms between the
layers. Figure 4.5 in chapter 4.2.2 shows the result of such a measurement.
The tomographic measurement of the atom distribution over the SWT is de-

scribed in detail in [Nei13].

Magnetic Field Stability and Frequency Resolution

At the offset field used for the tomographic measurement, the transition fre-
quency is ν|2〉|3〉 ≈ 80.959MHz with a magnetic field dependence of dν|2〉|3〉/dB ≈
6.3Hz/mG [Bre31]. With the gradient, this leads to a spatial dependence of
dν|2〉|3〉/dz ≈ 45Hz/µm. This corresponds to a splitting of ∆ν|2〉|3〉 ≈ 200Hz be-
tween the SWT layers.
To achieve a good signal-to-noise ratio in the tomographic measurement, we

average over several individual frequency scans. To avoid frequency shifts during
the measurement, we thus have to keep the total magnetic field constant to a
high precision during the measuring time. We therefore use the differential offset
amplifier circuit described in chapter 3.4.1 for the offset field, which leads to a
long-term stability of approximately 1mG. The long-term stability of the gradient
is approximately 10−3 (see chapter 3.4.2), which leads to a stability better than
0.01mG/µm. The total long-term magnetic field stability is thus slightly worse
than 1mG in the vicinity of the magnetic saddle point, which leads to a long-term
frequency stability of approximately 10 Hz.
The frequency resolution is determined by the width of the RF transition, which

we experimentally determine to be approximately 80Hz. It is influenced by mag-
netic field inhomogeneities over the sample and by short-term fluctuations of the
magnetic field. By choosing a sufficiently long pulse time for the RF pulse (20ms),
we make sure that it is not Fourier limited.

4.2.2. Optimizing the Transfer
With the above described tomographic method as a diagnostic tool, we were able to
optimize the transfer of the sample from the CBODT to the SWT. There are three
main quantities which influence the transfer efficiency, i.e. the fraction of atoms
that can be transferred into the central layer: the aspect ratio of the CBODT, the

coupling efficiencies, the fraction of the light which is not transmitted might heat and damage
the fiber tip.
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vertical extension of the sample, and the relative position of the CBODT and the
central SWT layer.
The aspect ratio of the CBODT is approximately 8.3 : 44 : 1 (see chapter

3.3), whereas that of an SWT layer is approximately 392 : 394 : 1 (see chapter 3.3).
This leads to a bad overlap of the traps both in vertical and horizontal direction.
In the vertical z-direction, the sample in the CBODT is too wide to fit into a
single layer of the SWT. In the horizontal plane, the CBODT is elliptical with
an aspect ratio of 8.3 : 44 ≈ 5.3, whereas the SWT is almost perfectly circular.
During the transfer, the sample thus expands in the x-direction, which can lead
to the excitation of a breathing mode and thus heating of the sample.
To resolve these two issues, we use the horizontal AOM in the CBODT beam

path to create a time-averaged potential for the atoms [Fri00, Rud01]. By mod-
ulating the frequency and thus the diffraction angle of the AOM, we scan the
x-position of the CBODT. The AOM operates at a frequency of νAOM ≈ 110MHz,
which we modulate with a frequency of νmod = 100 kHz. The shape of the modu-
lation function is triangular, and its amplitude corresponds to 15MHz. Since νmod
is substantially greater than all involved trapping frequencies, the atoms experi-
ence a quasi-static time-averaged potential. We optimized frequency, amplitude
and functional shape of the modulation function for an optimum roundness of the
time-averaged potential.
The influence of the modulation on the shape of the CBODT can be seen in

figure 4.3, which shows the shape of the original CBODT (A), the modulated
CBODT (B), and the SWT (C) in the horizontal plane. Due to the modulation,
the aspect ratio in the horizontal plane is reduced to approximately 1.5. The
modulated CBODT thus overlaps a lot better with the similarly sized circular
SWT. Note that due to the anharmonicity of the modulated trap, it is impossible
to measure trapping frequencies to determine the aspect ratio. The given number
is extracted from the width of a Gaussian fit to the data.
Since we cannot image the sample in the horizontal direction with sufficient res-

olution, it is difficult to make a quantitative statement about the vertical extension
of the sample in the modulated trap. However, both the shape in the horizontal
plane and the column density, which is reduced by a factor of 5, indicate a signifi-
cant reduction of the vertical extension. This is further confirmed by the increased
transfer efficiency.
The vertical extension of the sample can trivially be further reduced by

decreasing the particle number. However, for a given atom number we can still
make the sample smaller by compressing it. We thus slowly increase the trap depth
by a factor of 90 after the evaporation.
Another crucial factor in the size of the sample is its quantum statistics. A Fermi

gas will occupy energy levels up to the Fermi energy EF , which corresponds to the
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Figure 4.3.: A molecular BEC at 795G in the CBODT (A), the modulated
CBODT (B), and the SWT (C) viewed in the vertical axis. Due
to the modulation, the spatial overlap in the horizontal plane between
the CBODT and the SWT becomes significantly better. At the same
time, the vertical extension of the sample becomes smaller which fa-
cilitates the transfer into a single layer.
The color scale denotes the column atom density. Note that it is dif-
ferent for each image. The column density in (A) is approximately 5
times larger than in (B) and (C). Each image is the average of ap-
proximately 80 (A), 170 (B), and 30 (C) realizations.

Fermi radius rF =
√

2EF

mω2 in a harmonic trap with trapping frequency ω. A Bose
gas, on the other hand, has no degeneracy pressure and will thus be denser and
smaller at the same temperature. It is therefore important to transfer a molecular
BEC instead of a Fermi gas. Additionally, repulsive interactions in the sample will
lead to a higher mean energy and thus to a larger extension.
We thus transfer a molecular BEC at the lowest attainable temperature at a

magnetic offset field of 730G, where a ≈ 2500a0. Here, the repulsive interac-
tions are more than a factor of 3 weaker than at 795G, where we perform the
evaporation, but the gas is still stable.
The relative position between the CBODT and the central layer of the SWT

determines whether we load the sample into just one layer, or split it up between
two adjacent layers. We adjust the vertical position of the atoms in the CBODT to
the central SWT layer by pulling them up or down with a magnetic field gradient
during the transfer. To apply the gradient, we use the MOT coils. Using gradients
up to ±6G/cm, we can move the sample by approximately one layer without
significant heating or loss of atoms.
Paying attention to these three points, we optimized the transfer sequence. A

sketch of the sequence is shown and described in figure 4.4.
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4.2. Loading a Single Layer

0CBODT mod. amp. 0

Helmholtz field 795 G 730 G 795 G

~ 500 nK
SWT depth 0

grav. comp. grav. comp.B field gradient transfer gradient

~ 4 mWCBODT power 0
~ 350 mW

~ 1800 ms

Figure 4.4.: Sketch of the experimental sequence during the transfer. We ramp
up the CBODT power to compress the sample while simultaneously
ramping on the modulation for the time-averaged potential. At the
same time, we adiabatically decrease the magnetic offset field to 730G
to reduce the repulsive mean-field interaction and thus the size of the
sample. We adjust the position of the atoms to an interference maxi-
mum of the SWT by applying a magnetic field gradient with the MOT
coils, which shifts the atoms up or down. Then, we adiabatically ramp
on the SWT until we reach its final depth of approximately 500 nK,
while simultaneously ramping the CBODT off. After the transfer, we
return to an offset field of 795G and a magnetic field gradient which
compensates gravity.

With the help of the optimized transfer sequence, we can load at least approxi-
mately 89 % of our BEC of approximately 100 000 molecules into a single layer of
the SWT. Figure 4.5 shows the distribution over the layers obtained by means of
the above described tomographic measurement. The data points show the num-
ber of atoms transferred to state |3〉 as a function of the transition frequency,
which corresponds to the z-position. One can clearly observe the central layer
at ν|2〉|3〉 ≈ 80.9591MHz. The small maxima at approximately 81.9589MHz and
81.9593MHz correspond to the neighboring layers. By fitting the distribution with
the sum of three Gaussian profiles of the same width and distance, we estimate
the fraction of the sample in the non-central peaks to be 11 %.
However, we think that this number overestimates the fraction of the sample

in the non-central layers. During the tomographic measurement, we apply a large
magnetic field gradient. This leads to a tilt of the trapping potential, and to the
loss of approximately 25 % of the atoms. Since the filling of the central layer is
much higher than that of its neighbors at a very similar trap depth, we assume

54



4. Creating and Probing a 2D Fermi Gas

8 1 . 9 5 8 8 8 1 . 9 5 9 0 8 1 . 9 5 9 2 8 1 . 9 5 9 4
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
nu

mb
er 

of 
tra

ns
fer

red
 at

om
s

t r a n s i t i o n  f r e q u e n c y  � | 2 > | 3 >  [ M H z ]

Figure 4.5.: Tomographic measurement of the atom distribution over the SWT
layers. The data points represent the number of atoms transferred
into state |3〉 as a function of transition frequency and thus position
in z-direction. To avoid broadening, we drive the transition with a
low intensity, which leads to a small transferred atom number. The
central layer at νc|2〉|3〉 ≈ 80.9591MHz as well as its two neighbors at
νc|2〉|3〉± 200Hz are shown. The solid line is the sum of three Gaussian
profiles of the same width and distance, which is fitted to the data.
From the fit, we obtain a fraction of 89 % of the sample in the central
peak.

that a greater fraction is lost from the central layer than from the non-central ones.
Additionally, the raw signal in the non-central layers is close to the detection limit,
which leads to false-positive results when an atom density is fitted to the noise.

Due to the small number of atoms in the non-central layers, their phase space
density is low and their distribution should hence be thermal. Under this assump-
tion, we estimate their influence on the measured Fermi temperatures to be on
the order of a few percent. The measured temperature and condensate fraction
should not be affected. A detailed analysis of all systematic uncertainties can be
found in chapter A.3 in the appendix.
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4.3. Entering the Quasi-2D Regime

4.3. Entering the Quasi-2D Regime

After transferring our sample into a single layer of the standing wave trap (SWT),
we have to make sure that the sample is in the quasi-2D regime. In this regime,
excitations in axial direction are frozen out, i.e. µ, kBT < ~ωz, and the system
can be described by 2D theory [Pet00, Mar10]. For a sufficiently cold sample,
the quasi-2D regime can be reached by keeping the number of particles below the
critical number Ncrit, at which the first axially excited level becomes populated
(see chapter 3.3.3). This chapter explains how we control the particle number, and
how we measure whether the sample is quasi-2D.
In our experiments, we always transfer the same number of particles (i.e. 100 000

diatomic molecules) into the SWT. Only then, we spill unwanted atoms and thus
set the atom number for the experiment. Although it makes the transfer slightly
more complicated, this has an important advantage: after being heated during
the transfer, the sample is cooled again by the spilling process, which at the same
time acts as forced evaporative cooling. Thus, we can access significantly colder
temperatures.
We spill the spare atoms by lowering the depth of the SWT from approximately

500 nK to approximately 350 nK and simultaneously applying a strong magnetic
field gradient of approximately 35G/cm along the z-axis. Thus, atoms leaving the
central layer are quickly pulled away rather than populating the empty non-central
layers.
To find out whether excitations in axial direction are frozen out, we measure

the axial momentum distribution of the sample in time-of-flight, similar to the
measurement described in [Dyk11]. We ramp the sample across the BEC-BCS
crossover to 1400G into the weakly interacting Fermi regime. There, we suddenly
turn off the SWT and let the sample evolve for 3ms. Then we measure its axial
extension by fitting the obtained axial momentum distribution with a Gaussian.
By tuning the trap depth during the spilling process, we can tune the atom number.
We thus obtain the axial extension after time-of-flight as a function of the atom
number as shown in figure 4.6.
In the non-interacting limit, an atom in the axial ground state can be described

by a Gaussian wave function. The evolution of each of these wave functions is
then described by Gaussian dispersion. In particular, one expects the width of
the density distribution after the time-of-flight to be constant with respect to the
atom number. The width of the dispersing density distribution as a function of
time can be found by performing a time evolution of the original Gaussian wave
packet [Abe04]. A detailed derivation can also be found in [Pre14]. In our case,
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Figure 4.6.: Axial Gaussian width of the gas after 3ms time-of-flight. Two regimes

can be distinguished: for N < Ncrit, all atoms are in the axial ground
state of the trap. The obtained width after time-of-flight is thus inde-
pendent of the atom number. For N ≥ Ncrit, the first axially excited
trap level becomes available. Its population and thus the fraction of
axially excited atoms grows with atom number, which leads to an in-
crease of the effective Gaussian width after time-of-flight. We linearly
fit both regimes, and determine Ncrit ≈ 69 000 from the intersection
of the fits. Each data point is the average of several individual mea-
surements, error bars denote the standard error of the mean (SEM).
The solid part of the linear fits indicates the fit range.

the Gaussian width σz is given as

σz =
√

~
2mLi

( 1
ωz

+ ωzt2
)
≈

t=3ms
42.2µm . (4.1)

In our measurement, we obtain a plateau at σz ≈ 40.9µm for low atom numbers.
This is a clear signature for the absence of axial excitations. We attribute the
deviation of the measured Gaussian width from the theoretical value to the weak
attractive interactions in the sample.
When the atom number is increased, the first axially excited trap level becomes

populated. Atoms in this level have additional momentum in the axial direction.
As their number grows, their contribution to the distribution after time-of-flight
becomes more important. Thus, the fitted Gaussian width of the distribution
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4.3. Entering the Quasi-2D Regime

increases with atom number.
Both the plateau and the increase in σz in figure 4.6 are well described by a

linear behavior. We can thus extract the critical atom number Ncrit, where atoms
begin to populate the first axially excited level, from the intersection of linear
fits to the two regimes. This yields Ncrit ≈ 69 000. For our measurements, we
thus keep the atom number below 65 000 atoms per spin state. While being large
enough for a good signal-to-noise ratio, this atom number is smaller than Ncrit,
and we should thus obtain a quasi-2D sample.
The described measurement is only possible in the weakly interacting fermionic

limit since stronger interactions and the formation of a BEC inhibit the inde-
pendent evolution of the atoms in time-of-flight. Thus, we cannot repeat the
measurement for the other interaction strengths where we take data. Still, the
measurement at 1400G gives a valid upper bound for the occupation of axially ex-
cited states: all other measurements are performed closer to the BEC limit, where
the atoms occupy lower energy states due to their interactions and the formation
of molecules.
However, to map out the phase diagram of the system we also have to access

higher temperatures. They blur out the kink which we use to determine Ncrit

and thus make the described measurement unfeasible. At the same time, the
number of axially excited atoms grows with T . Although the axial trap frequency
corresponds to a temperature of Tωz = ~ωz/kB ≈ 265 nK which is higher than
the highest temperatures we use, the combination of thermal energy and a large
number of atoms occupying low energy states can lead to the population of axially
excited states. It is thus important to have a measure for the amount of axial
excitations at higher temperatures.
We obtain a measure for the fraction of excited atoms from the radial extension

of each sample. For this, we assume a constant trap shape and the equal occupation
of all motional degrees of freedom in the sample. The Fermi radius r1400G

F of
the sample at 1400G with the critical atom number Ncrit then represents the
threshold for occupation of axially excited trap levels. Only atoms outside r1400G

F

have sufficiently high energies to occupy the axially excited level. We can thus get
an estimate for the fraction of atoms with sufficient energy to populate an axially
excited state for all magnetic fields and temperatures. For this, we integrate the
atom density outside rF and normalize it to the whole sample. Since the radial
plane consists of two spatial dimensions and we assume equipartition, we have to
divide this number by 2 to obtain the fraction of atoms in an axially excited state.
As expected, the number of axial excitations is negligible for the lowest investi-

gated temperatures. For T/TF ≤ 0.2, the excited fraction is smaller than 1 % for
all investigated interaction strengths. Only for the hottest samples on the Fermi
side of the resonance (T/TF & 0.3, ln(kFa2D) > 3) it becomes greater than 1.5 %.
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This estimation does not take into account that the radially confining potential
of the magnetic saddle point becomes weaker with decreasing magnetic offset field.
At the lowest investigated offset field (692G), the total radial trapping frequency is
thus approximately 16 % smaller than at 1400G, where the reference measurement
is done. This leads to an increase of the Fermi radius of up to 8 %, and thus to an
overestimation of the measured axially excited fraction.
In conclusion, we are able to prepare a quasi-2D system of approximately 65 000

atoms per spin state. Only for high temperatures, excitations in the third dimen-
sion become available for a small percentage of the sample. As expected, this
effect is greater on the BCS side. Although small, it must not be neglected in the
interpretation of our data. This is especially true in the light of recent theoretical
work, which predicts an increase of the critical temperature due to an influence of
the third dimension [Fis14] (see also chapter 2.3.4).

4.4. Accessing the Phase Diagram: Tuning
Temperature and Interaction Strength

In order to map out the phase diagram of our quasi-2D strongly interacting Fermi
gas, we have to tune two variables, the temperature and the interaction strength.
We always start our experiments by preparing the same quasi-2D sample at an

offset field of 795G and the lowest achievable temperature of approximately 55 nK
to ensure reproducibility. Only then we change the temperature and interaction
strength.
To change the temperature, we perform a controlled heating procedure. For the

lowest three temperatures, we heat the gas by simply holding it in the trap for
0, 500, and 1000ms. During this hold time, technical noise heats the gas by up to
20 nK. To access higher temperatures, we hold the gas in the trap for 1000ms and
additionally perform controlled parametric heating. For this parametric heating,
we sinusoidally modulate the trap depth for 650ms during the hold time. By
varying the modulation amplitude between 0 and approximately 14 % of the trap
depth in 19 steps, we can set the temperature.
To ensure that we always introduce the same amount of thermal energy and

that the gas thermalizes quickly, we always perform the heating procedure at a
magnetic offset field of 795G, where the mean-field interactions are strong and
repulsive.
After allowing the sample to equilibrate for 300ms after the heating procedure,

we ramp the magnetic offset field to ten different values between 692G and 982G
in the vicinity of the broad Feshbach resonance at 832.2G (see chapter 2.2.2).
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Thus, also the 3D scattering length a and the dimensionless inverse 2D interaction
strength `z/a change between `z/a ≈ 7.12 and `z/a ≈ −2.35. Throughout the
whole experiment, we keep `z constant.
We perform all magnetic offset field ramps at a speed of dB/dt ≈ 1.9G/ms and

wait at the desired offset field for additional 20ms before probing the gas. We
ensure that the ramps are adiabatic by comparing the temperature of a sample
which we ramped from B = 732G across the Feshbach resonance to B = 900G to
that of a sample which we held at B = 732G for the same time. The temperatures
of both samples agree well within their uncertainties.

4.5. Absorption Imaging
As mentioned in chapter 3.5, we use absorption imaging to probe our sample. The
column density distribution is extracted from the shadow that the atom cloud casts
in a pulse of resonant light. Whereas it is relatively simple to obtain qualitative
information from absorption imaging, the extraction of quantitative information
such as the 2D atom density or the atom number is delicate. This chapter therefore
briefly reviews the principle of absorption imaging and the calibrations we make
to obtain reliable atom densities. All calibrations are done for the vertical imaging
axis, which we use to probe the radial density distribution.

4.5.1. Principle
A laser beam traveling through an atom cloud along the z-direction is attenuated
as

dI(r) = −n(r)σ∗(I) I(r) dz , (4.2)

where I(r) is the intensity of the beam, n is the atom density, and σ∗(I) = σ∗
0

1+I/I∗
sat

is the effective absorption cross section with the effective saturation intensity I∗sat.
Integrating equation (4.2) through the whole cloud along the propagation direction
yields

n2D(x, y)σ∗0 = − ln It(x, y)
I0(x, y) + I0(x, y)− It(x, y)

I∗sat
(4.3)

= OD(x, y) + I0(x, y)
I∗sat

(1− e−OD(x,y)) , (4.4)

where n2D is the atomic column density, OD = − ln It

I0
is the so-called optical

density, and It and I0 are the transmitted and the original intensity.
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Experimentally, one takes three images in close succession to obtain the column
density. The first image, called the absorption image, is taken with an imaging
pulse and the atoms present, and yields It(x, y). The second image is called the
reference image. It is taken after discarding the atoms, typically using the same
imaging pulse settings and yields I0(x, y). The third image is the so-called dark
image. It is taken without an imaging pulse and subtracted from both other images
to reduce the influence of stray light and camera noise.
Since the imaging pulse transfers momentum onto the atoms, absorption imaging

is a destructive measurement. Thus, one has to prepare a new sample for each
data point one wants to take.

4.5.2. Calibration

In the limit of low intensity (I0 � I∗sat), the cross section σ∗0 is constant through
the whole cloud and one can neglect the second term in equation (4.4). In this
case, to obtain the 2D density n2D of the sample, one only has to calibrate σ∗0.
In our case, σ∗0 can be set to the literature value σ0 in good approximation. We
confirm this by comparing the saturation intensity I∗sat obtained from our intensity
calibration (see below) to the literature value. However, to improve the signal-to-
noise ratio, it is helpful to use higher imaging intensities. For our experiments, we
use I0 ≈ I∗sat, and thus have to consider the second term in equation (4.4). Hence,
we also have to calibrate I0(x, y)/I∗sat. Since the profile of our imaging beam is
homogeneous at the position of the atoms to a good approximation, it is sufficient
to calibrate I0/I

∗
sat independent of the position in the image.

For the calibration, we take images of a purely atomic sample at 1400G with
our regular imaging settings and with a 10 dB attenuated imaging pulse inten-
sity. Assuming that the density distribution in the sample does not change over
time, we evaluate the images according to equation (4.4). Doing this, we calibrate
I0/I

∗
sat such that we obtain the same atomic density for both imaging intensi-

ties. Averaging over several sets consisting of approximately 100 realizations of
this measurement leads to I0/I

∗
sat = 0.97+0.13

−0.08. The errors are estimated by the
minimum and maximum values obtained from the individual sets.
On the BEC-side of the Feshbach resonance, where the sample consists of di-

atomic molecules, the absorption cross section of the sample is reduced. We com-
pensate for the reduced cross section with a calibration factor, which we obtain
from imaging a sample with a defined atom number at different offset fields. The
mean correction factor of approximately 50 realizations is given in table 4.1 for all
magnetic offset fields used in our experiments. The errors are the standard errors
of the mean.
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Offset Field B [Gauss] 692 732 782 ≥ 812

Calibration Factor 1.33 +0.10
−0.07 1.37 +0.11

−0.09 1.06 +0.06
−0.05 1

Table 4.1.: Correction factor for the reduced molecular absorption cross section for
all investigated magnetic fields.

4.5.3. Improving the Image Quality
By taking the absorption image and the reference image as quickly after each
other as possible, static interference fringes on the imaging beam are canceled
from the recorded optical densities OD. However, there is always a finite time
between the images. During this time, the fringes can move slightly, especially in
the presence of mechanical vibrations, which we introduce by magnetic field ramps
in some measurements (see chapter 4.6.3). These dynamic fringes are thus present
in our data. We minimize them with the help of the fringe removal algorithm
presented in [Ock10]. The algorithm constructs a basis set of background images
from images with no atoms present, which we take in turns with the actual images.
The background of each actual image is then fitted with this basis set in a region
of interest which excludes the atom cloud. By subtracting the thus obtained
background from the full image, fluctuations are reduced and the background
becomes flatter.
In order to obtain a bigger signal and thus to enhance the signal-to-noise ratio,

we increase the duration of the imaging pulse in the reference picture by a factor of
10. This leads to a constant offset of ln(10) in the optical density OD in equation
(4.4). By using the above mentioned fringe removal algorithm, we automatically
correct for this offset in our data.

4.5.4. Doppler Shift
During the 8µs imaging pulse, the atoms are accelerated by the light force. As-
suming saturated scattering, each atom scatters on average with approximately
70 photons. This leads to a random walk motion of the atoms on length scales
of approximately 3µm in radial direction, which is slightly less than our imag-
ing resolution and can thus be neglected. However, the atoms also experience
an acceleration along the imaging axis, and thus a Doppler shift. This Doppler
shift linearly increases the effective atomic resonance frequency during the imaging
pulse. At the end of the pulse, the detuning is approximately 10MHz
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We compensate for the Doppler shift by a sweep of the laser frequency. For this
sweep, we modulate the current through the laser diode with a linear ramp over
the duration of the imaging pulse. We fine-tune the amplitude of the ramp by
experimentally maximizing the detected atom density.

4.6. Probing the Pair Momentum Distribution
In addition to the density distribution of the trapped gas, which we obtain by
in-situ absorption imaging, we are also interested in its momentum distribution.
The momentum distribution contains information which is complementary to that
contained in the spatial density distribution. In particular, the existence of a
condensate can hardly be detected in the density distribution in the presence of
strong interactions. In the momentum distribution however, such a long range
coherent phase manifests itself as an enhanced occupation of low momenta in the
momentum distribution, independent of interactions (see chapter 2.3.3).
This chapter explains how we obtain the momentum distribution of the gas

with the help of a matter-wave focusing technique. In contrast to free time-of-
flight evolution, we focus the evolving gas with the help of a radial harmonic
potential. After a quarter of the oscillation period, we obtain the radial momentum
distribution. In addition, we perform a rapid magnetic field ramp which projects
atom pairs into deeply bound molecules. Hence, the relative momenta of the atoms
in a pair are removed from the detected momentum distribution. We thus obtain
the pair momentum distribution, which enables us to detect bosonic and fermionic
condensates in a consistent way.

4.6.1. The T/4 Technique
The standard technique to obtain information about the momentum distribution
of an ultracold gas is time-of-flight evolution. In this method, the gas is released
from the trap and allowed to evolve freely for a specified time t before an image of
its density distribution is taken. After the free evolution, the initial momentum p
of each particle in the gas is mapped onto a spatial position x according to

x(p, t) = x0 + p
m
t , (4.5)

where x0 is the initial position and m is the mass of the particle. This is depicted
for the 1D case in figure 4.7. For p

m
t � x0, the final position is dominated by

the momentum of the particle. However, in our system this is only the case for
unfeasibly long t, especially for low-momentum particles. Thus, in our system it
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is impossible to obtain the undistorted momentum distribution of a many-body
sample with this method.

Position x

M
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m
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x(p,t2)x0 x(p,t1)

Figure 4.7.: Phase space evolution of a particle in free time-of-flight. For short
evolution times t1 (blue), the final position of the particle is heavily
influenced by its initial position x0. For sufficiently long times t2
(green), the position after time-of-flight is much larger than x0, and
can be used as a measure for the initial momentum. However, for
finite t there will always be a residual influence of x0. Free time-of-
flight evolution will thus always only yield an approximation of the
momentum distribution of a many-body system.

In order to overcome this issue and still obtain the momentum distribution of our
sample, we use a matter-wave focusing technique which we describe in [Mur14b].3
Instead of a letting the gas evolve freely during the time-of-flight, we let it evolve
in a weak harmonic potential Uev with trapping frequency ωev. The phase space
evolution during this process is depicted in figure 4.8. Each particle in the gas
performs a harmonic oscillation in the potential. At an evolution time of a quarter
period t = T/4 = 2π/4ωev, the initial momentum is hence completely transformed
into a position according to x(t = T/4) = p(t=0)

mωev
. The density distribution at

t = T/4 is thus a one-to-one mapping of the initial momentum distribution. In
order to avoid distortions of the obtained momentum distribution, it is crucial that
the particles do not interact during the time-of-flight but evolve ballistically.
We show in [Mur14b] that this technique does not only work in the simple in-

tuitive picture of classical particles. It can also be described in terms of quantum
field operators. Thus, also information about the phase of the quantum gas is con-
served in the mapping process and can be extracted from the obtained momentum
distribution.

3A similar technique was applied to a weakly interacting Bose gas in [Tun10].
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Figure 4.8.: Phase space evolution of a gas in a harmonic potential. After an
evolution time of t = T/4 = 2π/4ωev, the phase space distribution is
rotated by π/2 and the initial momentum distribution is mapped onto
the spatial distribution.

The T/4 technique is the matter-wave analog to optical focusing, where the
focal plane of parallel beams can be shifted from infinity to a finite distance with
the help of a lens. In this picture, Uev corresponds to a long gradient index lens
[Sal07] with a parabolic index profile in which the beams travel until they reach
their focal plane.

4.6.2. Experimental Realization

We use the radial weakly confining harmonic potential of the magnetic offset field
saddle point (see chapter 3.4.1) as evolution potential Uev. This allows us to
obtain the momentum distribution of our sample in the radial plane. Unlike a
typical optical potential, this magnetic potential is very smooth and harmonic to
a very good approximation up to radii of several millimeters. Thus, it only has
minimal aberrations.
Before we probe the gas, it is trapped in a combination of the magnetic po-

tential and the optical potential of the SWT. To perform the T/4 technique, we
instantaneously turn off the SWT and let the gas evolve in the magnetic potential
(see figure 4.9). For the evolution, we use a magnetic offset field of 692G, which
leads to a trapping frequency ωev = ωr,mag = 2π(10.2 ± 0.1)Hz. We thus choose
an evolution time t = 25ms.
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795 G

~ 500 nK
SWT depth 0

25 ms

Helmholtz field

Camera trigger

692 G

probed
field

≤ 125 μs 50 ms

Figure 4.9.: Sketch of the experimental sequence during the pair momentum dis-
tribution imaging. We adjust the interactions in the quasi-2D Gas to
the desired value with the help of the magnetic offset field (see chap-
ter 4.4). Just before releasing the sample from the trap, we rapidly
ramp the magnetic offset field to the smallest accessible interaction
strength on the BEC side of the resonance. In this way, we minimize
interactions after the release and project atom pairs into deeply bound
molecules. We then let the gas evolve in the harmonic magnetic po-
tential provided by the saddle point of the offset field for an evolution
time of t = T/4 = 25ms. After this time, the initial pair momentum
distribution is completely mapped onto the spatial distribution. Fi-
nally, we take an absorption image (see chapter 3.5) of the obtained
distribution.

4.6.3. Quenching Interactions and Pair Projection: the Rapid
Ramp Technique

In order to avoid redistribution of momentum during the time-of-flight evolution,
which would alter the obtained momentum distribution, we have to minimize
interactions during the evolution. Partially, this is taken care of automatically by
the rapid expansion of the gas in axial direction after the release from the SWT.
This expansion is due to the large axial trapping frequency. The axial Gaussian
width σz of the sample as a function of time is shown in figure 4.10. In less than
5ms, σz increases by almost two orders of magnitude. Consequently, the density of
the sample decreases by a similar factor and collisions between the atoms become
negligible.
This feature of the quasi-2D gas effectively quenches interactions after the first

milliseconds of time-of-flight evolution. However, during and shortly after the
release the density is still high and collisions are present. Especially for strongly
interacting gases where the scattering amplitude is large, this can still distort the
obtained momentum distribution.
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Figure 4.10.: Axial Gaussian width σz during time-of-flight evolution. Due to the

tight confinement in z-direction, the gas expands quickly in this di-
rection. Thus, its density is reduced quickly and interactions are
minimized. The line describes the hydrodynamic expansion of a 3D
Fermi gas in the BEC limit into a harmonic saddle point potential
as described in [Ket08, Cla08], and was adapted to our experimental
parameters. As already observed in [Dyk10], it also describes the
quasi-2D case well.

In order to reduce these interactions, we ramp the magnetic offset field to B =
692G right before we release the gas from the SWT. At this magnetic field, a ≈
1500 a0, which is the lowest feasible interaction strength on the BEC side. We
perform the ramp at the maximum possible speed of dB/dt ≈ −2.4G/µs, which
leads to ramp durations of less than 125µs. This is fast enough that the momentum
distribution cannot adjust to the new interaction strength (see below).
A similar rapid ramp technique was also used for measurements in the 3D BEC-

BCS crossover [Reg04, Zwi04, Zwi05]. In addition to quenching the interactions,
it projects atom pairs into deeply bound molecules. This has the important con-
sequence that the relative momentum of the atom pair is projected out. Our mea-
sured momentum distribution thus only contains the center of mass momentum
of atom pairs. Hence, we can neither distinguish between fermionic Cooper pairs
and bosonic molecules, nor obtain information about the Tan contact [Tan08]. On
the other hand, this has the great advantage that also fermionic BCS condensates
give the clear signature of an enhanced low-momentum density. It thus enables us
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4.6. Probing the Pair Momentum Distribution

to analyze the momentum distribution for condensation in a consistent way both
on the BEC- and on the BCS side of the resonance.

Validation

In order to exclude systematic effects that alter the momentum distribution during
the matter-wave focusing process, we investigate two effects: non-ballistic expan-
sion and the adaptation of the sample to the interaction strength after the rapid
magnetic field ramp.
Non-ballistic expansion due to interactions during the time-of-flight evolu-

tion can be quantified by estimating the number of scattering events during the
evolution. At B = 692G, the sample consists of deeply bound molecules. Their
mean scattering rate is given by

Γsc = σv̄n̄ . (4.6)

The total scattering cross section between the bosonic molecules (see chapter 2.2.1)
is given by σ = 8πa2. The mean velocity of the molecules is v̄ =

√
2kBT/2m,

where 2m is the mass of a molecule. We estimate the mean in-situ molecule
density n̄in−situ from the measured mean 2D density n̄2D, assuming a Gaussian
distribution of the molecules in the lowest axial harmonic oscillator level of the
SWT. Neglecting expansion in radial direction, we estimate the mean density in
time-of-flight to be

n̄(t) ≈ n̄in−situ
σz, in−situ
σz(t)

(4.7)

with the axial Gaussian width σz (see figure 4.10).
The total number of scattering processes per molecule during time-of-flight as a

function of time can now be found by integrating Γsc over the evolution time:

Nsc(t) =
∫

0

t

Γsc(t)dt . (4.8)

For the coldest achievable temperatures (T ≈ 65 nK), Nsc(t) is depicted in figure
4.11. Most of the scattering processes occur during the first milliseconds of the
expansion, while the density is still large. For longer times, the scattering rate
goes to zero and the number of scattering processes per molecule saturates to
Nsc(t → ∞) ≈ 0.1. Thus, only about 10 % of the molecules scatter during the
whole process. Hence, the redistribution of momentum during the release and the
time-of-flight evolution is negligible.
Adaptation to the interaction strength after the rapid ramp is an im-

portant issue, as it would lead to signatures of condensation at points in the phase
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Figure 4.11.: Simulation of the total scattering events per particle during time-of-

flight evolution in the harmonic potential. After a steep increase for
short times, where the density is high, Nsc(t) saturates to approxi-
mately 0.1. This number of collisions can only lead to a negligible
redistribution of momentum.

diagram where no condensation occurs. The timescale of the ramp thus has to be
fast enough so the momentum distribution cannot adjust to the new interaction
strength.
To ensure this, we extract the temperature (see chapter 5.2.1) from momen-

tum distributions obtained with and without the rapid ramp both on the BEC
side (732G) and on the BCS side (872G) of the resonance. For both interaction
strengths, the temperatures are consistent within their uncertainty. Thus, the
measured temperature is not affected by the rapid ramp.
Furthermore, we investigate the non-Gaussian fraction of the momentum distri-

bution, which manifests itself in an enhanced occupation of low momentum states
(see chapter 5.2.2) and is a signature of condensation. This low momentum peak
is destroyed during the release in the strongly interacting limit. In the fermionic
limit, it is not visible without the rapid ramp, which projects atom pairs into
deeply bound molecules and thus removes the relative momentum of their con-
stituents. Thus, we can only directly compare the non-Gaussian fraction with and
without the ramp in the bosonic regime. Here, we find them to be identical.
Additionally, we ensure that the ramp to the bosonic regime does not create a
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4.6. Probing the Pair Momentum Distribution

non-Gaussian fraction even when there was none present in the original sample,
especially for high magnetic fields on the BCS side. To do this, we prepare a
sample at 900G at a temperature where we do not observe condensation. We then
perform the rapid ramp, and afterwards keep the sample in the trap for a variable
hold time thold, before we release it for T/4 momentum distribution imaging.
We observe that the non-Gaussian fraction starts to develop in the sample only

after thold ≈ 11ms. Thus, the adaptation to the new interaction strength is
two orders of magnitude slower than the rapid ramp, which we perform in less
than 125µs. Hence, the rapid ramp technique does not affect the measured non-
Gaussian fraction.

4.6.4. Axial Collimation
As an extension to the T/4 matter-wave focusing technique, we developed a tech-
nique to limit the fast axial expansion of the sample. The expansion has the
desirable effect to reduce the density and thus interactions during the evolution
time. However, it also leads to a large axial extension of the sample at the end of
the time-of-flight evolution. This extension is greater than the depth of focus of
our imaging setup, and thus limits the optical resolution.
The implementation of the axial collimation technique complicates the mea-

surement process and caused technical problems while taking the data presented
here. Since the momentum resolution without the axial collimation is sufficient
for the analysis we performed with this data, we thus decided not to use it for
our measurements. However, since it will be helpful for future high-resolution
measurements of the momentum distribution it is shortly presented here.
In order to stop the axial expansion, we again rely on the evolution of the gas

in a harmonic potential. Shortly after releasing the sample from the SWT into
the radial evolution potential Uev, we turn on the CBODT, which we modulate as
explained in chapter 4.2.2 in order to make it as round as possible in the radial
plane. The atoms then evolve in the CBODT for a quarter of its axial oscillation
period, until they reach their turning point in the potential. After this time, the
axial expansion is stopped and we turn the CBODT off again. A similar technique
has been described as Delta-Kick Cooling in [Amm97]. The working principle is
depicted in figure 4.12.
In a first experiment, we use an axial trapping frequency of ωCBODT

z ≈ 2π ·
500Hz for the collimation pulse. The collimation is thus achieved after tcol =
2π/4ωCBODT

z ≈ 0.5ms. Figure 4.13 shows the axial extension of the gas during
the time-of-flight evolution with (blue) and without (green) the collimation pulse.
The axial Gaussian width σz after the evolution time is strongly reduced to ap-
proximately 70µm by the collimation pulse.
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Figure 4.12.: Evolution of the density distribution during time-of-flight with (blue)
and without (green) the collimation pulse. Shortly after the release
from the SWT (A), the CBODT is switched on for a quarter of
its axial oscillation period. The axial expansion of the sample is
thus stopped (B). After time-of-flight expansion, the axial extension
of the collimated sample is considerably smaller than that of the
uncollimated sample (C).

During the axial collimation, the sample also experiences a potential in radial
direction. This leads to an additional focusing in radial direction and thus to a
decreased evolution time. At the used depth of the CBODT, the radial trapping
frequency is on the order of 2π · 10Hz,4 which is similar to that of the radial
magnetic potential ωev = 2π(10.2 ± 0.1)Hz. Since the atoms evolve in the com-
bined potential only for a short time, the total evolution time is thus only slightly
reduced.
In principle, the ellipticity of the modulated CBODT in the radial plane should

lead to an elliptic distortion of the measured pair momentum distribution. Similar
to the effect of the collimation on the expansion time, the elliptic distortion is
small. Assuming a harmonic CBODT potential, we calculate it to be below 1 %.
However, due to the strong anharmonicity of the modulated CBODT in radial
direction, it might deviate from this estimate. In the momentum distributions
obtained with the collimation pulse, we do not see a significant distortion.
As mentioned above, we did not use the axial collimation technique for the

measurements presented in this thesis since it introduces additional experimental
complications and error sources. The two most important points are described
below.
Due to an asymmetry in the control circuit of the offset field coils, the rapid

magnetic field projection ramp leads to a transfer of momentum in axial direction
4Due to the modulation of the CBODT, we cannot measure the actual trapping frequency and
have to estimate it from the unmodulated case.
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Figure 4.13.: Axial Gaussian width σz of the gas during time-of-flight evolution

without (green) and with (blue) collimation pulse. With the help of
the collimation pulse, it is possible to reduce σz to approximately
70µm after time-of-flight evolution. Thus, the optical resolution
should not be limited by the vertical extension of the gas anymore.

on the whole sample. Without the collimation pulse, we can compensate for this
momentum by applying a magnetic field gradient during the time-of-flight evolu-
tion. For the collimation pulse however, it is crucial to have a good alignment of
the CBODT with the sample, which we could not achieve in combination with the
projection ramp.
Additionally, by limiting the axial expansion of the gas, one also achieves a

higher scattering rate during time-of-flight evolution. This might influence the
measured momentum distribution more than the loss of optical resolution due to
the large axial extension of the gas.
We were able to improve the offset field control circuit since we took the pre-

sented data. Additionally, it should be possible to sufficiently reduce the scattering
rate during time-of-flight evolution by using a lower magnetic offset field. Thus,
we will be able to use the collimation technique for future measurements and hence
improve the resolution of the measured momentum distribution.
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5. Pair Condensation in a Strongly
Interacting 2D Fermi Gas

With the techniques described in the two previous chapters, we investigate the
properties of the 2D Fermi gas in the BEC-BCS crossover. Parts of the content of
this chapter have been published in [Rie14].
We create a quasi-2D sample in a single layer of the SWT, which we then probe

at 10 different interaction strengths and 22 different temperatures to map out the
phase diagram. For each point in the phase diagram, we measure both the density
distribution and the corresponding pair momentum distribution in the radial plane
by in-situ and T/4 absorption imaging. The obtained absorption images are shown
in figures 5.1 (density distribution) and 5.2 (pair momentum distribution) for some
of the investigated temperatures and interaction strengths.
In the density distribution shown in figure 5.1, one can nicely see the smooth

crossover from a bosonic system at low magnetic offset fields to a fermionic system
at high magnetic fields. At the weakest interaction strength in the bosonic regime
(692G), the sample consists of bosonic molecules. They accumulate in the lowest
energy states of the harmonic trap, which leads to a narrow density distribution
with central densities of up to 2.7 atoms/µm2. With increasing magnetic fields,
the growing repulsive interaction between the molecules leads to a broadening of
the density distribution. At the same time, the central density is reduced. For even
higher magnetic fields, the molecules dissociate and the gas consists of attractively
interacting fermionic atoms. In this regime, the width of the density distribution
grows even further due to the Pauli pressure. At the same time, the peak density
decreases until it reaches approximately 0.76 atoms/µm2 at the lowest temperature
at 922G.
With increasing temperature, the distribution becomes broader and the central

density gradually decreases to values between 1.1 atoms/µm2 (692G) and 0.61
atoms/µm2 (922G).
In the pair momentum distribution shown in figure 5.2, one observes a dras-

tic enhancement of the density at low momenta. The height of this sharp low-
momentum peak reaches its maximum at the lowest temperatures around 782G.
Here, the central momentum density is larger by a factor of approximately 34
than that of the highest shown temperature at the same field. Far on the BCS
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Figure 5.1.: In-situ density distribution of the gas for some of the investigated
interaction strengths and temperatures. One can nicely observe the
smooth transition between a gas of bosonic molecules, which has a
narrow distribution with a high central density, and a Fermi gas, which
has a wide and much flatter distribution. Each image is the average
of approximately 30 individual measurements.

side (922G), the peak vanishes. With increasing temperature, the central momen-
tum density decreases. For sufficiently high temperatures, the sharp peak vanishes
for all investigated interaction strengths.
Comparing the momentum- and density distribution at the coldest temperatures

at 852G and 922G, one observes a jump by a factor of 9 in the peak momentum
density ñ0, whereas the central spatial density n0 only changes by less than 10 %.
On the temperature axis (vertical axis in figures 5.1 and 5.2), the behavior is
qualitatively similar: there is a rapid increase of the low momentum density while
the central density of the gas changes only slightly.
We attribute the observed macroscopic occupation of low momentum states to
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Figure 5.2.: Momentum distribution of the gas for the same interaction strengths
and temperatures as in figure 5.1. A dramatic peak at low momenta
is clearly visible for low temperatures and small magnetic fields. It
heralds the condensation of the gas into a phase of long range phase
coherence. Each image is the average of approximately 30 individual
measurements.

the existence of a low-temperature phase with long range phase coherence. The
observed abrupt increase of this order parameter thus heralds the condensation
of the gas into this phase. Similar observations have been made with 3D Bose-
Einstein condensation [And95, Dav95] and in 2D Bose gases [Cla09, Tun10, Pli11],
where they were interpreted as BKT phase transition into the QLRO superfluid
phase (see chapter 2.3.3).
The following chapters treat the quantitative analysis of the measured density-

and pair momentum distributions. First, it is shown how we determine the Fermi
temperature of the sample from its peak density and thus map the system onto a
homogeneous 2D Fermi gas. Then, the extraction of the temperature and the non-
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thermal fraction of the sample is described, and the determination of the critical
temperature is explained. Finally, all obtained quantities are combined to create
the phase diagram of the gas. Furthermore, we analyzed the coherence properties
of the gas, which is described in the last chapter.
Due to the good radial symmetry of both distributions, we azimuthally average

all data and perform the further analysis with the radial distributions. This has
the advantage of improving the signal-to-noise ratio especially at large radii, where
the density is low and noise becomes an issue.

5.1. Normalization of Temperature and Interaction
Parameter

In order to obtain universally valid results for a generic Fermi gas, we normalize
all measured temperatures to the Fermi temperature TF . We use the homogeneous
definition of TF as given in equation (2.34),

TF,2D = ~2

2mkB
(4πn2D) ,

where we replace n2D with the central 2D density n0 of our sample. Thus, we
apply local-density approximation (LDA) in the middle of the trap, where the
phase space density is highest, and map our trapped gas onto the homogeneous
description.
Furthermore, we characterize the interaction strength in units of ln(kFa2D). In

analogy to TF , we obtain kF in LDA from the central 2D density of our sample
according to the homogeneous definition given in equation (2.35):

kF,2D =
√

4πn2D .

Thus, all obtained so-called degeneracy temperatures T/TF and interaction
strengths ln(kFa2D) can be directly compared to the homogeneous Fermi gas with
a generic contact interaction.
In contrast to the homogeneous system, the peak column density and thus the

Fermi temperature TF and wave vector kF change with temperature and interac-
tion strength. To adjust the interaction strength, we tune the 3D scattering length
a by means of a magnetic Feshbach resonance (see chapter 2.2.2). This adjusts the
2D scattering length a2D according to equation (2.17). In addition to a2D, the 2D
interaction parameter ln(kFa2D) also depends on kF and thus on the peak column
density which changes with temperature. Thus, ln(kFa2D) is not constant at a
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given magnetic offset field. We hence use the magnetic offset field to identify the
interaction strength when referring to a data set which includes different temper-
atures. Values of ln(kFa2D) which correspond to more than one temperature are
approximate values and correspond to ln(kFa2D) at Tc/TF . A translation of the
used magnetic fields into `z/a can be found in table A.1 in the appendix.
The dependence of the Fermi temperature on the interaction strength and the

temperature is shown in figure 5.3.
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Figure 5.3.: Fermi temperature TF as a function of ln(kFa2D) at the lowest
attainable temperature (A) and as a function of temperature at
782G (ln(kFa2D) ≈ −0.59) (B). The values are obtained from the
central 2D density in an LDA mapping to the homogeneous case ac-
cording to equations (2.34) and (2.35). Each data point is the average
of approximately 30 individual measurements, error bars denote the
standard error of the mean (SEM).

Figure 5.3 (A) shows the Fermi temperature TF of the sample as a function of
ln(kFa2D) at the lowest attainable temperature. In the fermionic regime, where
ln(kFa2D) � 1, TF goes towards approximately 350 nK, and is still decreasing at
the largest ln(kFa2D) shown. It reaches kBTF ≈ ~ωz ≈ kB · 265 nK at 1400G,
which we have adjusted with the particle number (see chapter 4.3). For decreasing
ln(kFa2D), TF grows until it reaches TF ≈ 1400 nK at ln(kFa2D) ≈ −7.1. Note that
here, in the bosonic limit, the Fermi surface does not exist. TF should therefore
be interpreted as a typical density scale of the system.
Figure 5.3 (B) shows TF as a function of temperature at a magnetic field of 782G

(ln(kFa2D) ≈ −0.59). With growing temperature, the harmonically trapped sam-
ple can access a larger area in the trap and becomes less dense. In the homogeneous
gas, this decrease in density corresponds to a decrease in TF and in kF ∝

√
TF .

Thus, also ln(kFa2D) decreases with growing temperature at a constant magnetic
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field.

5.2. Temperature and Condensate Fraction
Since we have access to the pair momentum distribution of the gas, we can simply
obtain its temperature from a Boltzmann fit to the thermal wings. In combina-
tion with the Fermi temperature TF , we can extract the dimensionless degeneracy
temperature T/TF . Thus, our temperatures can be directly compared to generic
fermionic theory.
The Boltzmann fit also yields the non-thermal fraction Nq/N of the gas, which

we define as the fraction of the momentum density which exceeds the thermal
distribution. This quantity is an important measure for the observed condensation.
However, in 2D it cannot be used to extract the transition temperature Tc, since
already significantly above Tc the momentum distribution deviates from that of a
thermal gas.

5.2.1. Temperature
To obtain the temperature of each sample, we fit the thermal wings of the radial
pair momentum distribution with a Boltzmann distribution

ñ(p, t = 0) = n(r, t = T/4) = A0 exp
(
−Mω2

evr
2

2kBT

)
. (5.1)

Here, A0 is the amplitude,M is the mass of the evolving particles, ωev ≈ 2π(10.2±
0.1)Hz is the trapping frequency of the magnetic evolution potential, kB is Boltz-
mann’s constant and T is the temperature of the sample. The average radial
pair momentum distribution at the lowest attainable temperature at ln(kFa2D) =
−0.51 (782G) and the corresponding fit are shown in figure 5.4. In order to make
the Boltzmann fit appear as a straight line, we plot log(ñ(k)) against k2, where
k = p/~.
In the high-momentum wing, the Boltzmann fit describes the data well over

more than one order of magnitude in density, and approximately an order of mag-
nitude on the momentum axis. This corresponds to more than 50 pixels. For low
momenta, the momentum density shows the already mentioned enhancement and
exceeds the Boltzmann fit by up to two orders of magnitude.
Figure 5.5 shows the obtained temperature as a function of the heating strength

(see chapter 4.4) on the BEC side (692G, ln(kFa2D) ≈ −7.3) and on the BCS side
of the resonance (952G, ln(kFa2D) ≈ 3.7). In the BCS regime, one observes that
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Figure 5.4.: Pair momentum density as a function of the momentum at the low-

est attainable temperature T/TF ≈ 0.08 at ln(kFa2D) ≈ −0.51. The
thermal wing is well described by a Boltzmann distribution (equation
(5.1)), which appears as a straight line in this representation. It yields
the temperature of the gas. At low momenta, the momentum distri-
bution exhibits a condensate peak which clearly exceeds the thermal
distribution. The non-thermal fraction Nq/N is marked in gray. Data
points are the average of approximately 30 azimuthally averaged mea-
surements. The solid part of the fit curve indicates the fit range.

the temperature only increases up to a heating strength of 17. When the gas is
heated further, it stays constant. This behavior can be explained by looking at the
particle number: for stronger heating, particles are lost on the fermionic side.1 We
thus do not use the data at these very high temperatures for the further analysis.
In both regimes, the lowest attainable temperatures agree within their errors

and are at approximately 65 nK. The highest attainable temperatures lie at ap-
proximately 180 nK (BEC side) and approximately 93 nK (BCS side). Since both
samples are heated in an identical way before the different interaction strengths
are set (see chapter 4.4), this seems unexpected at the first glance. However, one
has to take into account that the effective particle number differs by a factor of
two between the two limits. Whereas the gas consists of free atoms on the BCS

1On the bosonic side, the particles occupy lower trap levels and are therefore are not lost for
similarly strong heating.
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Figure 5.5.: Temperature of the gas as a function of the heating strength on the
BEC side (A) and the BCS side (B). For heating strengths larger
than 17, particles get lost on the BCS side and the temperature stays
approximately constant. Thus, we do not use these high temperatures
for further analysis. The highest temperatures differ by almost a factor
of 2 between (A) and (B). This is due to the formation of diatomic
molecules on the BEC side, which reduce the particle number and
thus the heat capacity of the thermal gas by a factor of 2. Each data
point is the average of approximately 30 individual measurements,
error bars denote the SEM.

side, it consists of half as many diatomic molecules on the BEC side. In a 2D
classical ideal gas of structureless particles, the temperature T of a gas is related
to the particle number N and internal energy U by [Dem13]

U = NkBT . (5.2)

Thus, an increase by a factor of two in N as our sample is ramped across the
crossover and molecules become unbound leads to a decrease in T by the same
factor.

At the highest investigated temperatures, our gas approaches the thermal limit
and thus the factor of 2 in difference between the BEC side and the BCS side. At
smaller temperatures, the gas is quantum degenerate and the simple classical gas
description breaks down.

80



5. Pair Condensation in a Strongly Interacting 2D Fermi Gas

Mass Dependence of the Fitted Temperature

As one can see from equation (5.1), the temperature extracted from the Boltzmann
fit to the momentum distribution is proportional to the mass M of the expanding
particles. On the BCS side of the resonance (B ≥ 892G), the thermal part of the
gas consists of free atoms with mass M = m. On the BEC side (B ≤ 782G), it
consists of diatomic molecules and M = 2m.
In the crossover (782 G < B < 892 G), the thermal part consists of a mixture of

atoms and molecules. However, we do not observe two separate slopes in the pair
momentum distribution. Thus, it is unclear which mass to use for the temperature
determination. However, fits assuming the atomic and the molecular mass yield
the lower and upper bound for the temperature of the gas.
Due to the continuous character of the crossover, it seems reasonable to assume

a monotonous behavior of the temperature with the interaction parameter. For
simplicity, we perform a first-order approximation and linearly interpolate the
degeneracy temperature T/TF between 782G and 892G for each heating strength.
This is illustrated for the lowest attainable temperature in figure 5.6.
The qualitative behavior of the thus obtained temperatures in the crossover

seems to justify the simple linear interpolation. The degeneracy temperature
is close to that obtained with the molecular mass on the bosonic side and be-
comes closer to that obtained with the atomic mass as the sample becomes more
fermionic.
We estimate the systematic uncertainties of this method by considering the up-

per and lower bound for T/TF . To obtain these bounds, we make two assumptions:

• the temperature behaves monotonic in the crossover, i.e. (T/TF )782G <
T/TF < (T/TF )892G, and

• T/TF has to lie between the value obtained with the atom and the molecule
mass, i.e. (T/TF )m < T/TF < (T/TF )2m.

The combination of these intervals for each data point then yields the bounds
and thus a conservative estimate of the systematic uncertainty. The obtained
uncertainties can be found in chapter A.3 in the appendix.

5.2.2. Non-Thermal Fraction
In addition to the temperature, the Boltzmann fit to the radial pair momentum
distribution also yields the non-thermal fraction Nq/N of the gas.2 We define this
quantity as the fraction of the momentum density which lies above the Boltzmann

2This non-thermal fraction is denoted the quasi-condensate in some publications [Pro01, Pro02].
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Figure 5.6.: Temperature interpolation at the lowest attainable temperature. We
obtain T/TF in the crossover by interpolating between the last clearly
bosonic and fermionic points for each heating strength (solid blue line).
The obtained temperature lies between those obtained with the molec-
ular (red squares) and atomic (green triangles) mass. It approaches
the molecular temperature close to the BEC side and the atomic tem-
perature close to the BCS side. Note that the behavior of T/TF indi-
cates that the crossover from molecules to atoms in the thermal part
happens at small positive ln(kFa2D) rather than at ln(kFa2D) = 0
(see chapters 2.3.4 and 5.4). Each data point is the average of ap-
proximately 30 individual measurements, error bars denote the SEM.
Systematic uncertainties of the interpolation are not depicted.

fit (gray area in figure 5.4). In the BEC limit, Nq/N thus includes effects of Bose
enhancement. Without knowledge of the chemical potential, the exact magnitude
of this effect is hard to quantify. However, fitting the momentum distribution
with a Bose function only yields plausible results when the enhancement over
the Boltzmann fit is smaller than a few percent. Still, for the interpretation of
our data, one should keep this effect in mind. Figure 5.7 shows the obtained
non-thermal fraction as a function of the degeneracy temperature T/TF at an
interaction strength of ln(kFa2D) ≈ −0.59 (782G).
The non-thermal fraction reaches values of almost 60 % for the coldest attainable

temperatures (T/TF ≈ 0.08). With increasing temperatures, it first decreases

82



5. Pair Condensation in a Strongly Interacting 2D Fermi Gas

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6
0 . 0

0 . 2

0 . 4

0 . 6

T / T F

N q/N

Figure 5.7.: Non-thermal fraction Nq/N as a function of T/TF at ln(kFa2D) ≈
−0.59 (782G). At low temperatures, Nq/N rapidly decreases. For
higher temperatures, the decrease becomes slow. Only for T/TF & 0.5,
Nq/N goes to zero. Each data point is the average of approximately
30 individual measurements, error bars denote the SEM.

rapidly. Then, the decrease becomes considerably slower around T/TF ≈ 0.2.
Nq/N tends to zero only for T/TF & 0.5. It is important to note that in the high
temperature regime the non-thermal fraction does not manifest itself in a sharp
low-momentum peak. Instead, the momentum distribution deviates smoothly from
the thermal behavior for a wide range of low momenta. This can be seen in figure
5.8. This behavior was predicted to occur in the weakly interacting 2D Bose
gas above the superfluid transition temperature Tc [Pro01, Pro02, Bis09]. It was
experimentally validated in [Cla09, Tun10, Pli11, Hun11] for the interacting Bose
gas. This presuperfluid increase of low momentum density makes it difficult to
determine Tc from the non-thermal fraction. We thus extract Tc from the peak
momentum density. This is described in the next chapter.

5.3. Critical Temperature
Due to the smooth presuperfluid increase of low-momentum density described in
the last chapter, the non-thermal fraction of the momentum distribution is not
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Figure 5.8.: Pair momentum density as a function of the momentum at high tem-
peratures. In contrast to lower temperatures (see figure 5.4), there
is no sharp low-momentum peak. Instead, there is a smooth in-
crease of the low-momentum density at intermediate temperatures
like T/TF ≈ 0.35 (A), which leads to a non-thermal fraction of
Nq/N ≈ 3 %. Only at the highest investigated temperatures of
T/TF ≈ 0.55, Nq/N vanishes and the momentum distribution be-
comes purely Gaussian. Data points are the average of approximately
30 azimuthally averaged measurements. The solid part of the fit curve
indicates the fit range.

a suitable parameter to extract the superfluid transition temperature Tc. Much
rather, the peak momentum density, i.e. the height of the condensate peak, should
be used: it is a measure for the number of atoms in the lowest momentum states,
which is equivalent to the number of atoms in a long-range coherent state.
To get a feeling for the long-range coherence of the gas, we estimate the fraction

of atoms in the long-range coherent phase similarly to [Pli11]. We calculate the
fraction of the gas with a coherence length larger than `coh ≥ 12.5µm � λdB.
It corresponds to the fraction of the momentum density within the innermost
two pixels of the radial momentum distribution. At the lowest temperature at
ln(kFa2D) = (B = 782G), where we observe the highest low-momentum peak,
this fraction is approximately 3.5 %. Thus, a significant fraction of the gas has a
correlation length which is clearly larger than thermal length scales.
For the determination of the critical temperature, we obtain the peak momentum

density ñ0 from the momentum distribution by fitting the inner 10−15 pixels with
a Gaussian. For the fit, we omit the innermost pixel since its fluctuations are not
evened out in the azimuthal averaging process. Although the condensate peak is
not expected to have a Gaussian momentum profile, this phenomenological fit to
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5. Pair Condensation in a Strongly Interacting 2D Fermi Gas

a small number of data points describes the tip of the low momentum peak well.
We normalize ñ0 by the in-situ peak density n0 and plot ñ0/n0 as a function

of the degeneracy temperature. This is shown in figure 5.9 for a magnetic off-
set field of 782G (ln(kFa2D) ≈ −0.7). One can clearly distinguish between two
regimes: for high temperatures, the normalized peak density is small and almost
constant, whereas it rapidly increases with falling temperature in the low temper-
ature regime. We interpret this behavior as a signature of the phase transition.
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Figure 5.9.: Normalized peak momentum density ñ0/n0 as a function of the de-
generacy temperature T/TF at B = 782G (ln(kFa2D) ≈ −0.7). At
low temperatures, ñ0/n0 decreases rapidly with temperature. At high
temperatures, ñ0/n0 is small and roughly constant. The transition
temperature Tc can be extracted from the intersection of linear fits to
the two regimes. Each data point is the average of approximately 30
individual measurements, error bars denote the SEM. The solid part
of the fit curves indicates the fit range.

Both regimes in figure 5.9 are well described by linear functions. We thus inter-
pret the intersection of the linear fits to each regime as the transition temperature
Tc/TF . The statistical error of Tc/TF is given by the standard errors of the two
linear fits.
For interaction strengths below ln(kFa2D) ≤ 1.8 (B ≤ 852 G), the low-momentum

peak is sufficiently pronounced and we can determine Tc/TF . Further towards the
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BCS side, Tc/TF lies below the lowest attainable temperature. Here, we can only
give our lowest attainable temperature as an upper bound for Tc/TF . The obtained
critical temperatures and can be found in table A.1 in the appendix.

5.4. Phase Diagram
To obtain the phase diagram of the 2D Fermi gas in the BEC-BCS crossover,
we combine the data obtained from the previously described analyses for all in-
vestigated temperatures and interaction strengths. The result is shown in figure
5.10. We plot the non-thermal fraction Nq/N as a color scale as a function of the
degeneracy temperature T/TF and the interaction parameter ln(kFa2D). Gray cir-
cles denote our data points, between which we interpolate the color scale linearly.
Additionally, we plot the transition degeneracy temperature Tc/TF as a function
of ln(kFa2D) as black points with their statistical errors. The dashed connections
between these points are a guide to the eye. Gray areas indicate experimentally
inaccessible regions. The theoretical predictions for Tc/TF according to equation
(2.52) in the BEC regime and equation (2.53) and (2.54) in the BCS regime are
shown as white dashed and dotted lines (compare also to the predicted phase dia-
gram in figure 2.6). Numbers for the critical temperature including all statistical
and systematic errors can also be found in table A.1 in the appendix.
Looking at the phase diagram, one first notices that the lowest attainable de-

generacy temperature T/TF on the BCS side is higher than on the BEC side by
almost a factor of 4. This is mainly due to the decrease of the density and thus
the Fermi temperature TF between the BEC- and the BCS regime (see chapter
5.1). The lowest attainable absolute temperature only changes weakly with the
interaction strength and lies at approximately 65 nK.
Comparing the critical degeneracy temperature Tc/TF to the non-thermal frac-

tion Nq/N , one observes that the phase transition always occurs at Nq/N ≈ 30 %.
This is well above of what can be explained by Bose enhancement. The presuper-
fluid increase of low momentum density thus involves a significant fraction of the
sample for all interaction strengths.
In the BEC limit of the phase diagram (ln(kFa2D) ≈ −7.3, B = 692G), the

critical temperature is Tc/TF = 0.104 ± 0.017. This corresponds to a critical
phase space density of ρc = n0λdB = 4.82± 0.79. With increasing magnetic field,
Tc/TF slowly increases towards the crossover. This behavior is in agreement with
the bosonic theory given by equation (2.52) [Pet03]. Although the values are
consistent with the prediction within their systematic uncertainty (not shown in
figure 5.10, see chapter A.3), the measured critical temperature systematically lies
above the prediction.
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Figure 5.10.: Phase diagram of the 2D Fermi gas in the BEC-BCS crossover. The
non-thermal fraction Nq/N is depicted as a color scale, measured
data points are gray open circles. The critical temperature Tc/TF
with its statistical errors is represented by black points. Theoretical
predictions for Tc/TF according to bosonic theory (equation (2.52))
correspond to the white dashed line, those according to BCS theory
without (equation (2.53)) and with GMB correction (equation (2.54))
correspond to the white dash-dotted and dotted line, respectively.

The theory curve reproduces the qualitative behavior of the critical temperature
well even in the strongly interacting regime up to ln(kFa2D) = 0. This is remark-
able, since the theory assumes an interacting Bose gas. It might thus indicate
that the gas has a bosonic character up to ln(kFa2D) = 0. This should be seen
in connection with the behavior of the degeneracy temperature, which exhibits
a steep increase centered around ln(kFa2D) ≈ 1 while being almost constant in
the bosonic and fermionic limits (see figure 5.6). Together, these two observations
indicate that the crossover should happen at small positive ln(kFa2D) rather than
around ln(kFa2D) = 0. This contradicts results which see the crossover centered
around ln(kFa2D) = 0. However, it is in agreement with quantum Monte-Carlo
calculations [Ber11, Nga13, Lev14], which predict the crossover to happen on the
BCS side of the resonance around ln(kFa2D) ≈ 0.5 (see chapter 2.3.4). Intuitively,
the shifted crossover point can be understood by looking at the binding energy
of the universal dimer (see figure 2.4). Unlike in 3D, the dimer does not become
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unbound on resonance even in the two-body picture.3 Since it has a consider-
able binding energy at ln(kFa2D) = 0, the gas still consists of molecules at the
investigated temperatures and can thus be described by bosonic theory.
In the crossover region, the critical temperature increases and reaches its max-

imum between ln(kFa2D) ≈ 1.2 − 1.7 (B = 832 − 852G), at a degeneracy tem-
perature of Tc/TF ≈ 0.2.4 The maximum of the non-thermal fraction lies at
ln(kFa2D) ≈ 0.5.
Further on the BCS side, BCS theory predicts an exponential decay of Tc/TF

with ln(kFa2D) as shown in equations (2.53) and (2.54). Unfortunately, we do
not achieve sufficiently low degeneracy temperatures in this regime to observe
the phase transition. For ln(kFa2D) & 2, we can thus only give an upper limit
of Tc/TF . 0.2. However, the behavior of the non-thermal fraction suggests a
decrease of Tc/TF with ln(kFa2D) on the BCS side of the resonance.
The theoretical predictions for Tc/TF from BCS theory without and with the

GMB correction for particle hole fluctuations around the Fermi surface (see equa-
tions (2.53) and (2.54)) lie below the experimental data. It is worth noting that
in this regime, a Boltzmann fit to the in-situ distributions seems to yield lower
temperatures. However, it only uses a small part of the distribution at the edge
of the trap, and is heavily dependent on the fit range as well as on the assumed
potential shape. Furthermore, the uncertainty due to noise in this low-density
region is large. Within these uncertainties, the thus extracted temperatures agree
with those obtained from the momentum distribution.
The deviation of our data from the theory curve might be partially due to a

possible breakdown of BCS theory in the strongly interacting regime. Additionally,
it also hints towards the already mentioned increase of Tc/TF in the quasi-2D
geometry. This should be clarified in future experiments, where Tc/TF could be
measured as a function of the atom number and thus the population of axially
excited motional levels.
In conclusion, the measured phase diagram shows the transition into a long-

range coherent phase across the 2D BEC-BCS crossover. The observed transition
temperatures and features like the presuperfluid increase of the non-thermal frac-
tion suggest that this is the BKT transition into the predicted QLRO superfluid
phase. However, to truly confirm the character of the transition, an analysis of
the coherence in the condensed phase is necessary. This analysis is described in
the next chapter.

3In the presence of a surrounding gas, even the 3D dimer only becomes unbound above the
resonance, see [Zwi04].

4The exact numbers are given in table A.1 in the appendix.
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5. Pair Condensation in a Strongly Interacting 2D Fermi Gas

5.5. Coherence Properties
In order to verify the character of the observed transition, we probe the coherence
properties of the gas. We do this in two independent ways. In the first measure-
ment, we let the sample interfere with itself with the help of a short time-of-flight
evolution. Thus, we make areas of coherent phase visible. In the second measure-
ment, we Fourier transform the momentum distribution and thus obtain a trap
average of the first order correlation function g1(r0 + r, r0). Below the critical
temperature, we observe an algebraic decay of correlations which is in qualitative
agreement with the predictions for a homogeneous 2D system.

5.5.1. Self-Interference
To probe the coherence properties of the gas by means of self-interference, we
release the gas from the optical SWT and let it evolve in time-of-flight for 4ms.
This time is sufficiently short that the obtained distribution in the radial plane is
dominated by the initial spatial distribution rather than by the momentum dis-
tribution. During the time-of-flight, phase fluctuations in the gas are transformed
into density fluctuations due to self-interference [Ima09].
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Figure 5.11.: In-situ density distribution (A) and density distribution after 4ms
time-of-flight (B). In-situ, the sample does not exhibit long-range
density fluctuations. After the short time-of-flight, initial phase fluc-
tuations are mapped onto density fluctuations due to self-interference
in the sample. The resulting distribution shows randomly distributed
macroscopic areas of high and low density. They correspond to areas
of coherent phase in the initial sample and are thus a signature of
quasi long-range order. Each image is the result of one individual
measurement.

89



5.5. Coherence Properties

The results of such a measurement are shown in figure 5.11 for the coldest
attainable temperature at ln(kFa2D) = −7.13 (B = 692G). Figure 5.11 (A) shows
the smooth density distribution before the time-of-flight evolution. Here, density
fluctuations are suppressed due to the interactions in the gas. Figure 5.11 (B)
shows the density distribution after short time-of-flight. It exhibits strong density
modulations, which form a pattern of randomly distributed areas of high and low
density. The size of the largest areas is on the order of few 10µm, which is an
order of magnitude larger than the thermal de-Broglie wavelength λdB ≈ 2µm. At
the same time, the areas are approximately an order of magnitude smaller than
the size of the sample. They are thus a signature of coherence on finite length
scales much larger than expected for a thermal gas.
In order to confirm the true randomness of the observed modulation pattern,

we average approximately 30 individual images taken at the same experimental
parameters. The resulting averaged distribution shows a smooth atom cloud with
no internal structure.
Below the critical temperature, we observe similar behavior for all investigated

interaction strengths. Above Tc, the large length scale fluctuations vanish. For
large ln(kFa2D), the modulation amplitude seems to decrease. However, here the
density of the gas is reduced by more than a factor of 3 (see figure 5.1), and the
observation of the fluctuations becomes difficult due to the reduced signal-to-noise
ratio. Thus, we do not perform a quantitative evaluation across the whole phase
diagram.
The observation of finite range coherence well below the critical temperature

rules out the presence of true long-range order (TLRO) in the condensed phase.
Thus, the observed transition cannot be Bose-Einstein condensation. At the same
time, the existence of coherent areas of random size significantly larger than λdB
is a strong indication for quasi long-range order (QLRO), as predicted for the
superfluid phase in a 2D gas. In combination with the measured phase diagram,
this measurement is thus a strong piece of evidence that the observed condensation
is the predicted BKT transition.
In principle, it is possible to obtain quantitative information about the phase

correlations in the gas with the help of the density-density correlation function

g2(r1, r2) = 〈n2D(r1)n2D(r2)〉
〈n2D(r1)〉 〈n2D(r2)〉 . (5.3)

Here, n2D stands for the 2D density after the short time-of-flight, and 〈 〉 denotes
the average of the respective quantity.
By comparing the experimentally obtained g2(r1, r2) with the results of a sim-

ulation [Sin14], we tried to verify the expected algebraic decay of the first order
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correlation function g1 (see equation (2.42)) and obtain its scaling exponent η.
However, the comparison of the inhomogeneous, harmonically trapped gas and
the homogeneous simulations is difficult [Pre14]. To minimize the influence of the
trap on the phase space density and thus the coherence properties of the gas, we
only analyzed a circle with a radius of 8 pixels in the center of the trap. Within
this circle, the average 2D density changes by less than 10 %. Thus, the deviation
from the homogeneous system should be small.
However, the small analyzed area also leads to a bad signal-to-noise ratio. Addi-

tionally, it was found in previous publications that the observed density modulation
is very sensitive to small imaging artifacts. In particular, effects like defocussing
[Cho12, Lan13] or the deviation from the atomic transition frequency can strongly
alter the observed modulation. We were thus only able to qualitatively reproduce
the predicted oscillatory behavior of g2(r1, r2) [Sin14]. The extraction of quanti-
tative information from the density modulation was not possible. Consequently,
we use a different method to further investigate the correlations in the gas. This
method is described in the following chapter.

5.5.2. Algebraic Decay of Correlations
In order to obtain further information about the correlations in our sample, we
study its first order correlation function g1(r), which we obtain by means of a 2D
Fourier transform of the 2D momentum distribution ñ(kx, ky) (see chapter 2.3.3).
The obtained correlation function g1(x, y) shows good radial symmetry, and we
thus azimuthally average it to obtain the radial correlation function g1(r). It is
shown for a sample at 692G (ln(kFa2D) ≈ −7.3) at a low and a high temperature
in figure 5.12.
The blue data points correspond to T/TF ≈ 0.05, where a large part of the

sample is condensed into the superfluid phase. For radii between r ≥ 16µm and
r ≤ 90µm, they clearly exhibit an algebraic decay g1(r) ∝ r−η as expected from
BKT theory. We observe such an algebraic decay for all temperatures below Tc.
For the homogeneous case, one expects the exponent to be η = 0.25 at Tc and

to go to zero as T goes to zero. However, the values we obtain for η lie between
η ≈ 1 at Tc and η ≈ 0.6 at the lowest attainable temperature.
The observed correlations thus decay faster than expected for the homogeneous

case. This might be due to the influence of the finite size harmonic trap, which
introduces an additional length scale into the system. In addition, the measured
momentum distribution is an average over the whole trap and thus the spatially
varying phase space density of the gas. Thus, the g1 correlation function we obtain
from it also has to be interpreted as an average quantity.
A quantum Monte-Carlo simulation of our quasi-2D homogeneously trapped gas

91



5.5. Coherence Properties

1 0 1 0 0

0 . 1

1

g 1(r)

r  [ µ m ]
Figure 5.12.: Azimuthal average of correlation function g1(r) obtained from the

2D Fourier transform of the pair momentum distribution. The blue
circles correspond to the lowest attainable temperature T/TF ≈ 0.05,
well below Tc/TF . An algebraic fit to the data (blue line) yields
a characteristic exponent of η = 0.6 ± 0.009. The green triangles
correspond to T/TF ≈ 0.11, just above Tc/TF . Here, the correlations
can be described by an exponential decay with a decay length of
10.4 ± 0.3µm. The cutoff of the data at r ≥ 100µm is due to the
finite size of the sample, the finite value at large radii is due to
noise. Each data point is the average of approximately 30 individual
measurements. The solid part of the fit curves indicates the fit range.

[Hol14] reproduces the high characteristic exponents found in the experimental
data. While the quantitative behavior of the observed correlations still needs
further analysis, we are thus optimistic that it can be understood.
The green data points were taken slightly above the critical temperature at

T/TF ≈ 0.11. They do not exhibit an algebraic decay, but can be described by an
exponential decay as expected for a non-condensed gas in the degenerate regime
[Had11]. The feature around r ≈ 100µm is caused by a fringe in the absorption
image. We observe a similar behavior for all temperatures above Tc. As the
temperature approaches Tc from above, the correlation length increases. At Tc,
the correlations change from exponential to algebraic.
In summary, the extracted correlations only match the expectations for a ho-

mogeneous gas qualitatively. Still, the phase transition between the algebraically
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decaying superfluid phase and the exponentially decaying non-condensed phase is
clearly visible in this analysis. This observation thus confirms the BKT character
of the observed phase transition. In addition, it also confirms the critical temper-
ature Tc/TF obtained from the rapid increase of the low-momentum density.
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6. Conclusion and Outlook
In the course of this thesis, we designed and built an apparatus which enables
us to create and probe a quasi two-dimensional strongly interacting Fermi gas
of ultracold atoms. In addition to the density distribution of the gas, which we
obtain from absorption imaging, we can access its momentum distribution. We
do this by means of a matter-wave focusing technique: we let the gas evolve in
a weak harmonic potential, until the initial momentum of each particle has been
mapped to its position after a quarter of the potential’s oscillation period. In
combination with a projection of atom pairs onto deeply bound molecules, which
removes the relative momentum of the atoms in the pair, this technique yields the
pair momentum distribution.
The coherence properties of the gas are encoded in its momentum distribution. A

purely thermal gas without long-range coherence follows a Boltzmann momentum
distribution. In contrast, long-range coherence corresponds to an enhanced low-
momentum density.
At sufficiently low temperatures, we find a strong enhancement of low momenta,

which manifests itself in a sharp peak in the center of the momentum distribu-
tion. We extract the non-thermal fraction and the temperature of the gas from a
Boltzmann fit to the thermal wings of the momentum distribution. We identify
the critical temperature Tc of the observed transition with the temperature where
the low-momentum peak forms.
By tuning the temperature and the interaction strength of the gas, we measure

its phase diagram across the BEC-BCS crossover. We map it onto homogeneous
theory by applying local density approximation at the trap center. The phase
diagram shows condensation into the long-range ordered phase both on the bosonic
and on the fermionic side of the crossover. The critical temperature ranges from
Tc/TF ≈ 0.1 in the bosonic regime up to Tc/TF ≈ 0.2 in the strongly interacting
limit.
We compare the measured critical temperature with the predictions for the

Berezinskii-Kosterlitz-Thouless (BKT) transition. The measured Tc agrees with
bosonic theory within our errors in the strongly interacting regime on the BEC
side. In the strongly interacting regime on the BCS side, the measured Tc lies
above the predictions. This deviation might be due to a possible breakdown of
BCS theory in the strongly interacting regime. However, it might also indicate an
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increase of the critical temperature due to the influence of the third dimension in
our quasi-2D system, which has been recently predicted [Fis14].
To investigate the coherence properties of the condensed phase, we perform a

self-interference measurement with the gas, where we observe macroscopic density
modulations below Tc. They correspond to modulations of the initial phase of
the sample on length scales above the thermal wavelength and below the system
size. This observation is a signature of the expected quasi long-range character of
correlations in the condensed phase.
For a more quantitative investigation of the coherence properties, we analyze

the Fourier transformation of the momentum distribution, which yields the trap
averaged first-order correlation function g1(r). Below Tc, it exhibits an algebraic
decay of correlations with r. This algebraic decay is expected for the superfluid
phase in a homogeneous 2D gas. However, the characteristic exponent of the
algebraic decay is higher than predicted by homogeneous theory. This might be a
feature of the trapped gas, and is reproduced in a quantumMonte-Carlo simulation
of our system [Hol14].
The combination of our results yields strong evidence that we have observed the

BKT transition into the quasi long-range phase coherent 2D superfluid phase in
the strongly interacting 2D Fermi gas.
In addition to the analysis presented in this thesis, we are currently working on

the extraction of the equation of state n2D(µ, T, ln(kFa2D)) from our data in collab-
oration with our theory partners. We obtain the 2D density n2D(r, T, ln(kFa2D))
from the measured in-situ data as a function of the the position r, the temperature
T , and the interaction strength ln(kFa2D). By applying local density approxima-
tion, we want to obtain µ(r) = µ0 − V (r) and thus the equation of state. To map
out V (r), we plan to use data taken in the weakly interacting Fermi regime, where
the equation of state can be computed. Whereas the extraction of µ0 from the
in-situ data is complicated, it should be possible to obtain it from the Gaussian
decay of the momentum distribution on long length scales.
For the 3D Fermi gas, similar measurements have been described in [Nas10,

Ku12]. In the 2D Fermi gas in the BEC-BCS crossover, the pressure of the gas in
the trap center has been measured as a function of ln(kFa2D) [Mak14].
The superfluidity of the observed condensed phase has not yet been directly

confirmed in the strongly interacting 2D Fermi gas. Similar to experiments in the
3D Fermi gas [Zwi05, Wei14] or the 2D Bose gas [Des12], this could be done by
stirring the condensed gas and observing the formation of quantized vortices, or
the existence of a critical velocity below which the gas cannot be excited.
Furthermore, it would be interesting to measure the behavior of Tc in the di-

mensional crossover from 2D to 3D. The predicted increased critical temperature
in this regime [Fis14] might help explain the observed high Tc in layered super-
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conductors, where the electron gas is confined in quasi two-dimensional planes
[Nor11, Jos13].
As mentioned in chapter 3, we included a 2D optical lattice into the setup in

addition to the standing wave trap (SWT) used for the experiments presented here.
We already tested the lattice setup by Kapitza-Dirac scattering of atoms on the
optical potential [Bec13] and by loading atoms into it. We are currently working
on the creation of a sample in a single layer egg-crate shaped lattice by combining
the 2D lattice with a single layer of the SWT. Starting with a 2D superfluid of
deeply bound molecules in the SWT and slowly ramping on the 2D lattice, we
should be able to continuously drive the system into a Mott insulating state of
molecules. The 2D geometry should enable the in-situ observation of the Mott
insulator, similar to the bosonic case [Gem09, Bak10, She10].
By dissociating the molecules with a magnetic field ramp to the fermionic side,

we should be able to prepare a fermionic band insulator, where each lattice site
is filled with one atom in each of the two spin states. To obtain a fermionic
metal or Mott insulator, one has to prepare a state with one atom per spin state,
corresponding to half filling of the conductance band. This should be possible
with the help of a dynamic lattice, where it is possible to merge and split lattice
sites. In such a lattice, we could prepare a molecular Mott insulator, where each
lattice site is populated by a diatomic molecule. By adiabatically splitting each
lattice site into two separate sites at repulsive interactions [Mur14a], it should be
possible to create a low entropy fermionic Mott insulator with one single atom per
site. Furthermore, in the presence of tunneling between the sites a macroscopically
entangled antiferromagnetically ordered state should form.
To create such a dynamic lattice, we are currently working on the realization

of arbitrary optical potentials with the help of a spatial light modulator (SLM).
In combination with a high resolution objective [Ser11], it will enable us to create
single-site resolved optical lattices of various geometries which can be changed
dynamically during the experiment, as well as arbitrary non-periodic structures.
In addition to the mentioned preparation scheme for antiferromagnetic order, the
SLM will allow us to test lattice cooling techniques [McK11], which might offer an
alternative way to reach very low entropies.
Another goal for our apparatus is the preparation of a three-component Fermi

gas in the optical lattice. 6Li provides three experimentally accessible Zeeman sub-
levels (see figure 2.2). Due to the overlapping broad Feshbach resonances between
these three components [Zür13], it is possible to create a three-component sample
with nearly symmetric interactions. Unlike a two-component Fermi gas, where
inelastic collisions are kinematically forbidden, such a three-component Fermi gas
is unstable in free space due to three-body recombination, which is resonantly
enhanced by the Efimov effect [Efi70, Ott08]. To probe the properties of the gas
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beyond this three-body loss, it has been proposed to stabilize it using quantum
Zeno loss blocking in a periodic potential [Kan09]. This effect has been verified
experimentally in [Sya08, Yan13]. In such a stabilized three-component Fermi gas,
we will be able to study exotic states of matter such as the so-called atomic color-
superfluid [Rap07, Wil07, Pri11]. Here, two components of the gas form pairs,
while the third component remains free. Such experiments could be useful to gain
insight into quantum chromodynamics.
In summary, the flexibility of our experimental apparatus will allow for the

realization and investigation of a large class of different systems, which will lead
to insights into various fields of physics.
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A.1. Measured Critical Temperatures

B [Gauss] `z/a ln(kFa2D) (stat.)(sys.) Tc/TF (stat.)(sys.)

692 7.11 - 7.30 (4)
(

+4
−5

)
0.104 (17)

(
+21
−19

)
732 3.98 - 3.42 (2)

(
+4
−6

)
0.117 (25)

(
+25
−22

)
782 1.55 - 0.59 (1)

(
+4
−7

)
0.151 (40)

(
+33
−27

)
812 0.55 0.57 (1)

(
+2
−7

)
0.180 (33)

(
+65
−36

)
832 0 1.23 (1)

(
+2
−8

)
0.204 (52)

(
+64
−48

)
852 -0.46 1.72 (1)

(
+2
−9

)
0.203 (38)

(
+57
−36

)
892 -1.22 2.73 (1)

(
+2
−9

)
< 0.196 (10)

(
+47
−31

)
922 -1.67 3.24 (1)

(
+2
−9

)
< 0.202 (11)

(
+51
−31

)
952 -2.04 3.65 (1)

(
+2
−10

)
< 0.194 (07)

(
+53
−30

)
982 -2.35 4.08 (1)

(
+2
−10

)
< 0.212 (15)

(
+55
−33

)
Table A.1.: Measured parameters as a function of the magnetic offset field B. The

interaction parameters `z/a and ln(kFa2D) as well as the obtained
critical temperature Tc/TF are given. Since ln(kFa2D) is temperature
dependent, the given value corresponds to that at Tc/TF where we
observed the phase transition. For magnetic fields above 852G, the
lowest attainable temperature is given as an upper bound for Tc/TF ,
and ln(kFa2D) corresponds to that temperature. Statistical errors are
standard errors of the mean, systematic errors are calculated as ex-
plained in chapter A.3.
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A.2. Binding Energy of the Universal Dimer
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Figure A.1.: Binding energy of the two-body bound state for typical parameters

in our experiment. The values are calculated according to equation
(2.23), with `z = 551.2 nm. This corresponds to the SWT depth of
approximately 500 nK at which all experiments were conducted.
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A.3. Systematic Uncertainties
In the previous chapters, only the statistical errors of the measured quantities were
given. However, there are several effects which lead to systematic uncertainties
in our measurements. The systematic uncertainties arising from different sources
were discussed in the respective chapters. Here, their influence on the measured
quantities is summarized. This chapter was previously published in [Rie14].

• Trap frequency of the expansion potential (see chapter 3.4.1):
We measure the trap frequency of the expansion potential ωexp with a relative
uncertainty of approximately 3%. This leads to an uncertainty of 6% in the
fitted temperature T according to equation (5.1).

• Magnification of the imaging system (see chapter 3.5):
We calibrate the magnification of the imaging system using Kapitza-Dirac
scattering of atoms on the optical lattice potential. The resulting uncertainty
in the magnification is approximately 6.5%. This uncertainty quadratically
enters the temperature obtained from the fit with equation (5.1). Thus, T
has a relative systematic uncertainty of approximately 13%.

• Atoms in non-central pancakes (see chapter 4.2.2):
From the tomographic measurement of the distribution of the gas over the
SWT layers, we obtain an upper bound of 11% for the fraction of atoms
in the non-central layer. To estimate their influence on the measured peak
density n0, we assume that their temperature is not affected by the evap-
orative cooling in the SWT due to the small atom number. However, it is
affected by the heating procedure where the depth of the trap is modulated.
The minimum temperature of these atoms is thus about 100 nK, the tem-
perature after the transfer into the SWT. Assuming a thermal Boltzmann
gas, we calculate the density of 5500 atoms in the two non-central layers
to be n0,nonc. = 0.14 atoms/µm2 [Ket08]. This leads to an overestimation
of TF by 5% for the lowest magnetic fields, and 19% at the highest mag-
netic fields, where n0 is smaller due to the fermionic character of the sample.
Analogously, kF is overestimated by 2.5% to 9.5%.

• Imaging intensity I0/Isat (see chapter 4.5.2):
The measured atom density depends on the intensity I0/Isat of the imaging
beam (see equation (4.4)). We calibrate the imaging intensity to be I0/I

∗
sat =

0.97+0.13
−0.08. This leads to an uncertainty in the peak density n0 and thus we

obtain TF
+7%
−4% and kF

+3.5%
−2% . The same uncertainty applies to the peak

momentum density ñ0. It thus cancels in ñ0/n0.
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• Reduced absorption cross section of molecules (see chapter 4.5.2):
A finite molecular binding energy leads to a reduced absorption cross section
for the lowest three magnetic fields (692G, 732G and 782G). The experi-
mentally determined correction factor is given in table 4.1. By rescaling the
obtained images with this factor, we compensate for this effect. The uncer-
tainty in the rescaling factor leads to an uncertainty in the peak density n0
and thus TF which is smaller than 8%. The corresponding uncertainty in kF
is smaller than 4%.

• Evolution time (see chapter 4.6):
The measured momentum distribution depends on the evolution time in the
harmonic radial potential. By measuring the temperature as a function of
time-of-flight, we find a maximum for t = T/4 = π/(2ωev). Deviations from
the ideal evolution time, which is slightly below 25ms, lead to a systematic
underestimation of T by approximately 5%. The peak momentum density
ñ0 is underestimated by a similar factor.

• Fit range for temperature determination (see chapter 5.2.1):
The temperature determined from the Boltzmann fit to the tail of the mo-
mentum distribution weakly depends on the region included in the fit. This
leads to a relative uncertainty of 7% in T for low temperatures and up to
13% at the highest investigated temperatures. The same effect also leads
to a systematic uncertainty in the determined non-thermal fraction Nq/N .
The absolute uncertainty in Nq/N ranges from 0.06 at low temperatures to
about 0.02 at high temperatures.

• Temperature interpolation (812G - 852G) (see chapter 5.2.1):
For the magnetic fields 812G, 832G, and 852G, the thermal tail of the
momentum distribution cannot be described by a pure molecular or atomic
gas. This makes a temperature determination according to equation (5.1)
impossible. Thus, the reduced temperature T/TF is determined by linear in-
terpolation between the values at 782G and 892G for each heating strength.
The boundaries for the resulting values are estimated assuming that T/TF
behaves monotonously with ln(kFa2D) and that T/TF must lie between the
values obtained assuming a purely atomic or molecular sample. The obtained
relative uncertainties are biggest for small temperatures. They are usually
on the order of 10%-25% and range up to 50% for few individual values.

Resulting total systematic uncertainties: Assuming a Gaussian distribu-
tion of the previously mentioned 8 independent error sources, we calculate the
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total relative systematic uncertainty of T/TF . For magnetic fields where the tem-
perature is not interpolated, we obtain T/TF

+29%
−28% for low temperatures and low

magnetic fields to T/TF+38%
−29% at high temperatures and high magnetic fields. At the

magnetic fields where the temperature is determined by interpolation, the system-
atic uncertainties are significantly bigger and one obtains approximately T/TF+50%

−35%
at low temperatures and T/TF+35%

−32% at high temperatures.
The systematic uncertainty in ln(kFa2D) is dominated by the uncertainties in kF .

We thus neglect uncertainties in a2D. The total absolute systematic uncertainty
then lies between ln(kFa2D)+0.07

−0.08 for low magnetic fields and ln(kFa2D)+0.07
−0.12 for

high magnetic fields. The systematic uncertainties of T/TF and ln(kFa2D) at the
critical temperature Tc are listed in table A.1.
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